图像空间和k空间中基于强度曲率函数的滤波:在人脑磁共振成像中的应用

High Frequency Pub Date : 2019-03-18 DOI:10.1002/hf2.10031
Carlo Ciulla
{"title":"图像空间和k空间中基于强度曲率函数的滤波:在人脑磁共振成像中的应用","authors":"Carlo Ciulla","doi":"10.1002/hf2.10031","DOIUrl":null,"url":null,"abstract":"<p>This research examines the use of the intensity-curvature functional (ICF) as filter in image space and in k-space. The novelty of this study is three-folded: (a) The evidence that the ICF calculated from three additional (International Journal of Imaging Systems and Technology, 28, 2018, 54) two-dimensional model polynomial functions is an image space filter; (b) An additional (The use of the intensity-curvature functional as k-space filter: Applications in magnetic resonance imaging of the human brain, 2018) ICF-based k-space filtering technique applicable to two-dimensional magnetic resonance images; (c) Results obtained through the calculation of the ICF of the trivariate cubic Lagrange model polynomial function (LGR3D). Although ICF-based k-space filtering delivers clear and well-defined images, ICF-based image space filtering remains superior when reconstructing vessel images in T2 MRI. The ICF of the LGR3D function provides sharp images too.</p>","PeriodicalId":100604,"journal":{"name":"High Frequency","volume":"2 1","pages":"48-60"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/hf2.10031","citationCount":"5","resultStr":"{\"title\":\"Intensity-curvature functional-based filtering in image space and k-space: Applications in magnetic resonance imaging of the human brain\",\"authors\":\"Carlo Ciulla\",\"doi\":\"10.1002/hf2.10031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This research examines the use of the intensity-curvature functional (ICF) as filter in image space and in k-space. The novelty of this study is three-folded: (a) The evidence that the ICF calculated from three additional (International Journal of Imaging Systems and Technology, 28, 2018, 54) two-dimensional model polynomial functions is an image space filter; (b) An additional (The use of the intensity-curvature functional as k-space filter: Applications in magnetic resonance imaging of the human brain, 2018) ICF-based k-space filtering technique applicable to two-dimensional magnetic resonance images; (c) Results obtained through the calculation of the ICF of the trivariate cubic Lagrange model polynomial function (LGR3D). Although ICF-based k-space filtering delivers clear and well-defined images, ICF-based image space filtering remains superior when reconstructing vessel images in T2 MRI. The ICF of the LGR3D function provides sharp images too.</p>\",\"PeriodicalId\":100604,\"journal\":{\"name\":\"High Frequency\",\"volume\":\"2 1\",\"pages\":\"48-60\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/hf2.10031\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"High Frequency\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/hf2.10031\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Frequency","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/hf2.10031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本研究探讨了在图像空间和k空间中使用强度曲率泛函(ICF)作为滤波器。本研究的新颖性在于三个方面:(a)从三个额外的(International Journal of Imaging Systems and Technology, 28,2018,54)二维模型多项式函数计算的ICF是图像空间滤波器的证据;(b)附加的(使用强度曲率函数作为k空间滤波器:在人脑磁共振成像中的应用,2018)适用于二维磁共振图像的基于icf的k空间滤波技术;(c)三变量三次拉格朗日模型多项式函数(LGR3D)的ICF计算结果。尽管基于icf的k空间滤波可以提供清晰、定义明确的图像,但在重建T2 MRI血管图像时,基于icf的图像空间滤波仍然具有优势。LGR3D功能的ICF也提供了清晰的图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Intensity-curvature functional-based filtering in image space and k-space: Applications in magnetic resonance imaging of the human brain

This research examines the use of the intensity-curvature functional (ICF) as filter in image space and in k-space. The novelty of this study is three-folded: (a) The evidence that the ICF calculated from three additional (International Journal of Imaging Systems and Technology, 28, 2018, 54) two-dimensional model polynomial functions is an image space filter; (b) An additional (The use of the intensity-curvature functional as k-space filter: Applications in magnetic resonance imaging of the human brain, 2018) ICF-based k-space filtering technique applicable to two-dimensional magnetic resonance images; (c) Results obtained through the calculation of the ICF of the trivariate cubic Lagrange model polynomial function (LGR3D). Although ICF-based k-space filtering delivers clear and well-defined images, ICF-based image space filtering remains superior when reconstructing vessel images in T2 MRI. The ICF of the LGR3D function provides sharp images too.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Issue Information The dixie cup problem and FKG inequality Market making under a weakly consistent limit order book model Barndorff-Nielsen and Shephard model for hedging energy with quantity risk On multilateral incomplete information decision models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1