S. Nagai, N. Negoro, T. Fukuda, H. Sakai, T. Ueda, T. Tanaka, N. Otsuka, D. Ueda
{"title":"用于隔离直接栅极驱动器的微波驱动技术","authors":"S. Nagai, N. Negoro, T. Fukuda, H. Sakai, T. Ueda, T. Tanaka, N. Otsuka, D. Ueda","doi":"10.1109/IMWS.2012.6215808","DOIUrl":null,"url":null,"abstract":"The wireless power transmission technology using an electro-magnetic resonant coupler (EMRC) has been applied to an isolated direct gate driver for GaN power switching devices. This direct gate driver with the Drive-by-Microwave technologies dose not needs an additional isolated voltage source and a photo-coupler because it can supply an isolated gate signal and signal power all together. The wireless power transmission capability in the driver is crucial for its performances, especially, regarding a switching speed and power consumption. This paper presents the potential of GaN/Sapphire direct gate driver using 5.8GHz wireless power transmission with a compact butterfly-shaped EMRC. Since the fabricated direct gate driver with the integrated EMRC drove a GaN power switching device with a fast turn on/off time, it is proved that the GaN/Sapphire HFETs is best suitable for the direct gate driver.","PeriodicalId":6308,"journal":{"name":"2012 IEEE MTT-S International Microwave Workshop Series on Innovative Wireless Power Transmission: Technologies, Systems, and Applications","volume":"76 1","pages":"267-270"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Drive-by-Microwave technologies for isolated direct gate drivers\",\"authors\":\"S. Nagai, N. Negoro, T. Fukuda, H. Sakai, T. Ueda, T. Tanaka, N. Otsuka, D. Ueda\",\"doi\":\"10.1109/IMWS.2012.6215808\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The wireless power transmission technology using an electro-magnetic resonant coupler (EMRC) has been applied to an isolated direct gate driver for GaN power switching devices. This direct gate driver with the Drive-by-Microwave technologies dose not needs an additional isolated voltage source and a photo-coupler because it can supply an isolated gate signal and signal power all together. The wireless power transmission capability in the driver is crucial for its performances, especially, regarding a switching speed and power consumption. This paper presents the potential of GaN/Sapphire direct gate driver using 5.8GHz wireless power transmission with a compact butterfly-shaped EMRC. Since the fabricated direct gate driver with the integrated EMRC drove a GaN power switching device with a fast turn on/off time, it is proved that the GaN/Sapphire HFETs is best suitable for the direct gate driver.\",\"PeriodicalId\":6308,\"journal\":{\"name\":\"2012 IEEE MTT-S International Microwave Workshop Series on Innovative Wireless Power Transmission: Technologies, Systems, and Applications\",\"volume\":\"76 1\",\"pages\":\"267-270\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE MTT-S International Microwave Workshop Series on Innovative Wireless Power Transmission: Technologies, Systems, and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IMWS.2012.6215808\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE MTT-S International Microwave Workshop Series on Innovative Wireless Power Transmission: Technologies, Systems, and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMWS.2012.6215808","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Drive-by-Microwave technologies for isolated direct gate drivers
The wireless power transmission technology using an electro-magnetic resonant coupler (EMRC) has been applied to an isolated direct gate driver for GaN power switching devices. This direct gate driver with the Drive-by-Microwave technologies dose not needs an additional isolated voltage source and a photo-coupler because it can supply an isolated gate signal and signal power all together. The wireless power transmission capability in the driver is crucial for its performances, especially, regarding a switching speed and power consumption. This paper presents the potential of GaN/Sapphire direct gate driver using 5.8GHz wireless power transmission with a compact butterfly-shaped EMRC. Since the fabricated direct gate driver with the integrated EMRC drove a GaN power switching device with a fast turn on/off time, it is proved that the GaN/Sapphire HFETs is best suitable for the direct gate driver.