一种新的遗传模糊标记语言及其在健康饮食评价中的应用

IF 1 4区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE International Journal of Uncertainty Fuzziness and Knowledge-Based Systems Pub Date : 2012-09-11 DOI:10.1142/S0218488512400235
Chang-Shing Lee, Mei-Hui Wang, H. Hagras, Zhi-Wei Chen, Shun-Teng Lan, Chin-Yuan Hsu, S. Kuo, H. Kuo, Hui-Hua Cheng
{"title":"一种新的遗传模糊标记语言及其在健康饮食评价中的应用","authors":"Chang-Shing Lee, Mei-Hui Wang, H. Hagras, Zhi-Wei Chen, Shun-Teng Lan, Chin-Yuan Hsu, S. Kuo, H. Kuo, Hui-Hua Cheng","doi":"10.1142/S0218488512400235","DOIUrl":null,"url":null,"abstract":"In this paper, we present a novel Genetic Fuzzy Markup Language (GFML)-based genetic fuzzy system, including the genetic learning base, the knowledge base and rule base of FML, the fuzzy inference engine, and the genetic learning mechanism. The GFML is applied to the genetic fuzzy system for dealing with the knowledge base, the rule base, and the genetic learning base of the healthy diet domain, including the ingredients and the contained servings of six food categories of some common food in Taiwan. Moreover, the proposed novel system is able to infer the healthy status of human's daily eating. In the proposed system, the domain experts first define the nutrient facts of the common food to construct the fuzzy food ontology. Meanwhile, the involved Taiwanese students of National University of Tainan (NUTN) record their daily meals for a constant period of time. Then, based on the built fuzzy profile ontology, fuzzy food ontology, and fuzzy personal food ontology, a GFML-based genetic fuzzy system is carried out to infer the possibility of dietary healthy level for one-day meals. The experimental results show that the proposed GFML-based genetic fuzzy system gives good results for the healthy diet assessment.","PeriodicalId":50283,"journal":{"name":"International Journal of Uncertainty Fuzziness and Knowledge-Based Systems","volume":"29 1","pages":"247-278"},"PeriodicalIF":1.0000,"publicationDate":"2012-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"A NOVEL GENETIC FUZZY MARKUP LANGUAGE AND ITS APPLICATION TO HEALTHY DIET ASSESSMENT\",\"authors\":\"Chang-Shing Lee, Mei-Hui Wang, H. Hagras, Zhi-Wei Chen, Shun-Teng Lan, Chin-Yuan Hsu, S. Kuo, H. Kuo, Hui-Hua Cheng\",\"doi\":\"10.1142/S0218488512400235\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a novel Genetic Fuzzy Markup Language (GFML)-based genetic fuzzy system, including the genetic learning base, the knowledge base and rule base of FML, the fuzzy inference engine, and the genetic learning mechanism. The GFML is applied to the genetic fuzzy system for dealing with the knowledge base, the rule base, and the genetic learning base of the healthy diet domain, including the ingredients and the contained servings of six food categories of some common food in Taiwan. Moreover, the proposed novel system is able to infer the healthy status of human's daily eating. In the proposed system, the domain experts first define the nutrient facts of the common food to construct the fuzzy food ontology. Meanwhile, the involved Taiwanese students of National University of Tainan (NUTN) record their daily meals for a constant period of time. Then, based on the built fuzzy profile ontology, fuzzy food ontology, and fuzzy personal food ontology, a GFML-based genetic fuzzy system is carried out to infer the possibility of dietary healthy level for one-day meals. The experimental results show that the proposed GFML-based genetic fuzzy system gives good results for the healthy diet assessment.\",\"PeriodicalId\":50283,\"journal\":{\"name\":\"International Journal of Uncertainty Fuzziness and Knowledge-Based Systems\",\"volume\":\"29 1\",\"pages\":\"247-278\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2012-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Uncertainty Fuzziness and Knowledge-Based Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1142/S0218488512400235\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Uncertainty Fuzziness and Knowledge-Based Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1142/S0218488512400235","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 23

摘要

本文提出了一种基于遗传模糊标记语言的遗传模糊系统,包括遗传学习库、遗传模糊标记语言的知识库和规则库、模糊推理引擎和遗传学习机制。将GFML应用于遗传模糊系统,处理健康饮食领域的知识库、规则库和遗传学习库,包括台湾常见食物的六种食物类别的成分和含份量。此外,所提出的新系统能够推断人类日常饮食的健康状况。在该系统中,领域专家首先对常见食品的营养成分进行定义,构建模糊食品本体。与此同时,参与研究的台南国立大学的台湾学生在一段固定的时间内记录他们的日常饮食。然后,在构建的模糊轮廓本体、模糊食物本体和模糊个人食物本体的基础上,构建了基于遗传模糊模型的一日膳食健康水平可能性推理系统。实验结果表明,基于gfml的遗传模糊系统对健康饮食评价具有较好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A NOVEL GENETIC FUZZY MARKUP LANGUAGE AND ITS APPLICATION TO HEALTHY DIET ASSESSMENT
In this paper, we present a novel Genetic Fuzzy Markup Language (GFML)-based genetic fuzzy system, including the genetic learning base, the knowledge base and rule base of FML, the fuzzy inference engine, and the genetic learning mechanism. The GFML is applied to the genetic fuzzy system for dealing with the knowledge base, the rule base, and the genetic learning base of the healthy diet domain, including the ingredients and the contained servings of six food categories of some common food in Taiwan. Moreover, the proposed novel system is able to infer the healthy status of human's daily eating. In the proposed system, the domain experts first define the nutrient facts of the common food to construct the fuzzy food ontology. Meanwhile, the involved Taiwanese students of National University of Tainan (NUTN) record their daily meals for a constant period of time. Then, based on the built fuzzy profile ontology, fuzzy food ontology, and fuzzy personal food ontology, a GFML-based genetic fuzzy system is carried out to infer the possibility of dietary healthy level for one-day meals. The experimental results show that the proposed GFML-based genetic fuzzy system gives good results for the healthy diet assessment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
0.00%
发文量
48
审稿时长
13.5 months
期刊介绍: The International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems is a forum for research on various methodologies for the management of imprecise, vague, uncertain or incomplete information. The aim of the journal is to promote theoretical or methodological works dealing with all kinds of methods to represent and manipulate imperfectly described pieces of knowledge, excluding results on pure mathematics or simple applications of existing theoretical results. It is published bimonthly, with worldwide distribution to researchers, engineers, decision-makers, and educators.
期刊最新文献
A Structure-Enhanced Heterogeneous Graph Representation Learning with Attention-Supplemented Embedding Fusion Homogenous Ensembles of Neuro-Fuzzy Classifiers using Hyperparameter Tuning for Medical Data PSO Based Constraint Optimization of Intuitionistic Fuzzy Shortest Path Problem in an Undirected Network Model Predictive Control for Interval Type-2 Fuzzy Systems with Unknown Time-Varying Delay in States and Input Vector An OWA Based MCDM Framework for Analyzing Multidimensional Twitter Data: A Case Study on the Citizen-Government Engagement During COVID-19
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1