Jie Chen, Hang Li, B. Ding, Hong-wei Zhang, Enke Liu, Wenhong Wang
{"title":"拓扑半金属候选物TbPtBi的大异常霍尔角","authors":"Jie Chen, Hang Li, B. Ding, Hong-wei Zhang, Enke Liu, Wenhong Wang","doi":"10.1063/5.0033707","DOIUrl":null,"url":null,"abstract":"The magnetotransport properties in antiferromagnetic half-Heusler single crystals of TbPtBi, a magnetic-field-induced topological semimetal with simple band structure, are investigated. We found that a nonmonotonic magnetic field dependence of the anomalous Hall resistivity in a high magnetic field (B>7T), which come from the change of band structure induced by the Zeeman-like splitting when applying the external magnetic field. The experiment results show that credible anomalous Hall resistivity and conductivity reach up to 0.6798m{\\Omega}cm and 125{\\Omega}-1cm-1, respectively. A large AHA up to 33% is obtained in TbPtBi, which is comparable to typical ferromagnetic Weyl semimetal. The analysis of results show it should be attributed to topological band around EF and low carrier density.","PeriodicalId":8467,"journal":{"name":"arXiv: Materials Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Large anomalous Hall angle in a topological semimetal candidate TbPtBi\",\"authors\":\"Jie Chen, Hang Li, B. Ding, Hong-wei Zhang, Enke Liu, Wenhong Wang\",\"doi\":\"10.1063/5.0033707\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The magnetotransport properties in antiferromagnetic half-Heusler single crystals of TbPtBi, a magnetic-field-induced topological semimetal with simple band structure, are investigated. We found that a nonmonotonic magnetic field dependence of the anomalous Hall resistivity in a high magnetic field (B>7T), which come from the change of band structure induced by the Zeeman-like splitting when applying the external magnetic field. The experiment results show that credible anomalous Hall resistivity and conductivity reach up to 0.6798m{\\\\Omega}cm and 125{\\\\Omega}-1cm-1, respectively. A large AHA up to 33% is obtained in TbPtBi, which is comparable to typical ferromagnetic Weyl semimetal. The analysis of results show it should be attributed to topological band around EF and low carrier density.\",\"PeriodicalId\":8467,\"journal\":{\"name\":\"arXiv: Materials Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Materials Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0033707\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Materials Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0033707","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Large anomalous Hall angle in a topological semimetal candidate TbPtBi
The magnetotransport properties in antiferromagnetic half-Heusler single crystals of TbPtBi, a magnetic-field-induced topological semimetal with simple band structure, are investigated. We found that a nonmonotonic magnetic field dependence of the anomalous Hall resistivity in a high magnetic field (B>7T), which come from the change of band structure induced by the Zeeman-like splitting when applying the external magnetic field. The experiment results show that credible anomalous Hall resistivity and conductivity reach up to 0.6798m{\Omega}cm and 125{\Omega}-1cm-1, respectively. A large AHA up to 33% is obtained in TbPtBi, which is comparable to typical ferromagnetic Weyl semimetal. The analysis of results show it should be attributed to topological band around EF and low carrier density.