{"title":"真菌线粒体Nad5泛基因内含子景观","authors":"A. Zubaer, Alvan Wai, G. Hausner","doi":"10.1080/24701394.2019.1687691","DOIUrl":null,"url":null,"abstract":"Abstract An intron landscape was prepared for the fungal mitochondrial nad5 gene. A hundred and eighty-eight fungal species were examined and a total of 265 introns were noted to be located in 29 intron insertion sites within the examined nad5 genes. Two hundred and sixty-three introns could be classified as group I types and two group II introns were noted. One additional group II intron module was identified nested within a composite group I intron. Based on features related to RNA secondary structures, introns can be classified into different subtypes and it was observed that intron insertion-sites are biased towards phase 0 and they appear to be specific to an intron type. Intron landscapes could be used as a guide map to predict the location of fungal mtDNA mobile introns, which are composite elements that include a ribozyme component and in some instances open reading frames encoding homing endonucleases or reverse transcriptases and all of these have applications in biotechnology.","PeriodicalId":54298,"journal":{"name":"Mitochondrial Dna Part a","volume":"33 1","pages":"835 - 842"},"PeriodicalIF":1.1000,"publicationDate":"2019-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"The fungal mitochondrial Nad5 pan-genic intron landscape\",\"authors\":\"A. Zubaer, Alvan Wai, G. Hausner\",\"doi\":\"10.1080/24701394.2019.1687691\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract An intron landscape was prepared for the fungal mitochondrial nad5 gene. A hundred and eighty-eight fungal species were examined and a total of 265 introns were noted to be located in 29 intron insertion sites within the examined nad5 genes. Two hundred and sixty-three introns could be classified as group I types and two group II introns were noted. One additional group II intron module was identified nested within a composite group I intron. Based on features related to RNA secondary structures, introns can be classified into different subtypes and it was observed that intron insertion-sites are biased towards phase 0 and they appear to be specific to an intron type. Intron landscapes could be used as a guide map to predict the location of fungal mtDNA mobile introns, which are composite elements that include a ribozyme component and in some instances open reading frames encoding homing endonucleases or reverse transcriptases and all of these have applications in biotechnology.\",\"PeriodicalId\":54298,\"journal\":{\"name\":\"Mitochondrial Dna Part a\",\"volume\":\"33 1\",\"pages\":\"835 - 842\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2019-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mitochondrial Dna Part a\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/24701394.2019.1687691\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mitochondrial Dna Part a","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/24701394.2019.1687691","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
The fungal mitochondrial Nad5 pan-genic intron landscape
Abstract An intron landscape was prepared for the fungal mitochondrial nad5 gene. A hundred and eighty-eight fungal species were examined and a total of 265 introns were noted to be located in 29 intron insertion sites within the examined nad5 genes. Two hundred and sixty-three introns could be classified as group I types and two group II introns were noted. One additional group II intron module was identified nested within a composite group I intron. Based on features related to RNA secondary structures, introns can be classified into different subtypes and it was observed that intron insertion-sites are biased towards phase 0 and they appear to be specific to an intron type. Intron landscapes could be used as a guide map to predict the location of fungal mtDNA mobile introns, which are composite elements that include a ribozyme component and in some instances open reading frames encoding homing endonucleases or reverse transcriptases and all of these have applications in biotechnology.
期刊介绍:
Mitochondrial DNA Part A publishes original high-quality manuscripts on physical, chemical, and biochemical aspects of mtDNA and proteins involved in mtDNA metabolism, and/or interactions. Manuscripts on cytosolic and extracellular mtDNA, and on dysfunction caused by alterations in mtDNA integrity as well as methodological papers detailing novel approaches for mtDNA manipulation in vitro and in vivo are welcome. Descriptive papers on DNA sequences from mitochondrial genomes, and also analytical papers in the areas of population genetics, phylogenetics and human evolution that use mitochondrial DNA as a source of evidence for studies will be considered for publication. The Journal also considers manuscripts that examine population genetic and systematic theory that specifically address the use of mitochondrial DNA sequences, as well as papers that discuss the utility of mitochondrial DNA information in medical studies and in human evolutionary biology.