弯曲碳纤维层压板复合材料弯曲性能研究

Hongfei Li, Zhiping Chen, Peng Ge, Hao Miao
{"title":"弯曲碳纤维层压板复合材料弯曲性能研究","authors":"Hongfei Li, Zhiping Chen, Peng Ge, Hao Miao","doi":"10.1115/pvp2022-84397","DOIUrl":null,"url":null,"abstract":"\n As a clean and efficient secondary energy, hydrogen energy is of great significance for building a clean, low-carbon, safe and efficient energy system. At present, high-pressure gaseous hydrogen storage systems for vehicles mostly use carbon fiber reinforced composite materials as the pressure-bearing materials of hydrogen storage vessel to obtain a lighter mass, so as to ensure the hydrogen storage system has a higher hydrogen storage density. However, unlike traditional steel hydrogen storage vessel, carbon fiber composite hydrogen storage vessel has low rigidity and is prone to bending and deformation during manufacture and use, which can cause safety accidents. Most of the previous studies on mechanical properties have focused on flat laminates, which are of limited help to the study of hydrogen storage vessel. In view of this situation, this work fabricated the curved carbon fiber laminates with the same manufacturing process as the hydrogen storage vessel and investigated their flexural performance using a combination of experimental and finite element methods. The bending experiments of curved carbon fiber laminates at different angles were carried out. And the finite element model for flexural performance prediction of curved carbon fiber laminates was established through validation against the experimental results. A parametric study was further performed to analyzed the influence of carbon fiber winding angle on the flexural performance. This work will provide reference and basis for the subsequent research on the flexural performance of carbon fiber composite hydrogen storage vessel.","PeriodicalId":23700,"journal":{"name":"Volume 2: Computer Technology and Bolted Joints; Design and Analysis","volume":"67 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on Flexural Performance of Curved Carbon Fiber Laminate Composites\",\"authors\":\"Hongfei Li, Zhiping Chen, Peng Ge, Hao Miao\",\"doi\":\"10.1115/pvp2022-84397\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n As a clean and efficient secondary energy, hydrogen energy is of great significance for building a clean, low-carbon, safe and efficient energy system. At present, high-pressure gaseous hydrogen storage systems for vehicles mostly use carbon fiber reinforced composite materials as the pressure-bearing materials of hydrogen storage vessel to obtain a lighter mass, so as to ensure the hydrogen storage system has a higher hydrogen storage density. However, unlike traditional steel hydrogen storage vessel, carbon fiber composite hydrogen storage vessel has low rigidity and is prone to bending and deformation during manufacture and use, which can cause safety accidents. Most of the previous studies on mechanical properties have focused on flat laminates, which are of limited help to the study of hydrogen storage vessel. In view of this situation, this work fabricated the curved carbon fiber laminates with the same manufacturing process as the hydrogen storage vessel and investigated their flexural performance using a combination of experimental and finite element methods. The bending experiments of curved carbon fiber laminates at different angles were carried out. And the finite element model for flexural performance prediction of curved carbon fiber laminates was established through validation against the experimental results. A parametric study was further performed to analyzed the influence of carbon fiber winding angle on the flexural performance. This work will provide reference and basis for the subsequent research on the flexural performance of carbon fiber composite hydrogen storage vessel.\",\"PeriodicalId\":23700,\"journal\":{\"name\":\"Volume 2: Computer Technology and Bolted Joints; Design and Analysis\",\"volume\":\"67 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 2: Computer Technology and Bolted Joints; Design and Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/pvp2022-84397\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 2: Computer Technology and Bolted Joints; Design and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/pvp2022-84397","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

氢能作为清洁高效的二次能源,对构建清洁低碳、安全高效的能源体系具有重要意义。目前,汽车用高压气体储氢系统大多采用碳纤维增强复合材料作为储氢容器的承压材料,以获得更轻的质量,从而保证储氢系统具有更高的储氢密度。然而,与传统钢制储氢容器不同,碳纤维复合材料储氢容器刚度低,在制造和使用过程中容易发生弯曲和变形,容易造成安全事故。以往的力学性能研究大多集中在平板层压板上,对储氢容器的研究帮助有限。针对这种情况,本文采用与储氢容器相同的制造工艺制备了弯曲碳纤维层压板,并采用实验与有限元相结合的方法对其弯曲性能进行了研究。对弯曲碳纤维层压板进行了不同角度的弯曲实验。通过与试验结果的对比验证,建立了弯曲碳纤维层合板弯曲性能预测的有限元模型。通过参数化研究,分析了碳纤维缠绕角度对弯曲性能的影响。本工作将为后续碳纤维复合材料储氢容器的弯曲性能研究提供参考和依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Research on Flexural Performance of Curved Carbon Fiber Laminate Composites
As a clean and efficient secondary energy, hydrogen energy is of great significance for building a clean, low-carbon, safe and efficient energy system. At present, high-pressure gaseous hydrogen storage systems for vehicles mostly use carbon fiber reinforced composite materials as the pressure-bearing materials of hydrogen storage vessel to obtain a lighter mass, so as to ensure the hydrogen storage system has a higher hydrogen storage density. However, unlike traditional steel hydrogen storage vessel, carbon fiber composite hydrogen storage vessel has low rigidity and is prone to bending and deformation during manufacture and use, which can cause safety accidents. Most of the previous studies on mechanical properties have focused on flat laminates, which are of limited help to the study of hydrogen storage vessel. In view of this situation, this work fabricated the curved carbon fiber laminates with the same manufacturing process as the hydrogen storage vessel and investigated their flexural performance using a combination of experimental and finite element methods. The bending experiments of curved carbon fiber laminates at different angles were carried out. And the finite element model for flexural performance prediction of curved carbon fiber laminates was established through validation against the experimental results. A parametric study was further performed to analyzed the influence of carbon fiber winding angle on the flexural performance. This work will provide reference and basis for the subsequent research on the flexural performance of carbon fiber composite hydrogen storage vessel.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
High-Temperature Design of 700°C Heat Exchanger in a Large Scale High-Temperature Thermal Energy Storage Performance Test Facility On the Effect of Hot-Box Size on Coke Drum Skirt Fatigue Life Numerical Approaches for Bolt Interactions in Flange Gasket Assemblies Experimental Investigation on the Fatigue Strength for Different Tightening Procedures and Materials in Metric Screws Study on Post-Buckling Behaviors of Lower Heads for Fracture Control of Reactor Vessels Under BDBE
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1