使用轻量级数据流技术的信号处理系统的低功耗设计方法

Lin Li, Tiziana Fanni, T. Viitanen, Renjie Xie, F. Palumbo, L. Raffo, H. Huttunen, J. Takala, S. Bhattacharyya
{"title":"使用轻量级数据流技术的信号处理系统的低功耗设计方法","authors":"Lin Li, Tiziana Fanni, T. Viitanen, Renjie Xie, F. Palumbo, L. Raffo, H. Huttunen, J. Takala, S. Bhattacharyya","doi":"10.1109/DASIP.2016.7853801","DOIUrl":null,"url":null,"abstract":"Dataflow modeling techniques facilitate many aspects of design exploration and optimization for signal processing systems, such as efficient scheduling, memory management, and task synchronization. The lightweight dataflow (LWDF) programming methodology provides an abstract programming model that supports dataflow-based design and implementation of signal processing hardware and software components and systems. Previous work on LWDF techniques has emphasized their application to DSP software implementation. In this paper, we present new extensions of the LWDF methodology for effective integration with hardware description languages (HDLs), and we apply these extensions to develop efficient methods for low power DSP hardware implementation. Through a case study of a deep neural network application for vehicle classification, we demonstrate our proposed LWDF-based hardware design methodology, and its effectiveness in low power implementation of complex signal processing systems.","PeriodicalId":6494,"journal":{"name":"2016 Conference on Design and Architectures for Signal and Image Processing (DASIP)","volume":"24 1","pages":"82-89"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Low power design methodology for signal processing systems using lightweight dataflow techniques\",\"authors\":\"Lin Li, Tiziana Fanni, T. Viitanen, Renjie Xie, F. Palumbo, L. Raffo, H. Huttunen, J. Takala, S. Bhattacharyya\",\"doi\":\"10.1109/DASIP.2016.7853801\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dataflow modeling techniques facilitate many aspects of design exploration and optimization for signal processing systems, such as efficient scheduling, memory management, and task synchronization. The lightweight dataflow (LWDF) programming methodology provides an abstract programming model that supports dataflow-based design and implementation of signal processing hardware and software components and systems. Previous work on LWDF techniques has emphasized their application to DSP software implementation. In this paper, we present new extensions of the LWDF methodology for effective integration with hardware description languages (HDLs), and we apply these extensions to develop efficient methods for low power DSP hardware implementation. Through a case study of a deep neural network application for vehicle classification, we demonstrate our proposed LWDF-based hardware design methodology, and its effectiveness in low power implementation of complex signal processing systems.\",\"PeriodicalId\":6494,\"journal\":{\"name\":\"2016 Conference on Design and Architectures for Signal and Image Processing (DASIP)\",\"volume\":\"24 1\",\"pages\":\"82-89\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 Conference on Design and Architectures for Signal and Image Processing (DASIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DASIP.2016.7853801\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Conference on Design and Architectures for Signal and Image Processing (DASIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DASIP.2016.7853801","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

数据流建模技术促进了信号处理系统的设计探索和优化的许多方面,例如有效的调度、内存管理和任务同步。轻量级数据流(LWDF)编程方法提供了一个抽象的编程模型,支持基于数据流的信号处理硬件和软件组件和系统的设计和实现。以前关于LWDF技术的工作强调了它们在DSP软件实现中的应用。在本文中,我们提出了LWDF方法的新扩展,以有效地集成硬件描述语言(hdl),并应用这些扩展来开发低功耗DSP硬件实现的有效方法。通过一个应用于车辆分类的深度神经网络的案例研究,我们展示了我们提出的基于lwdf的硬件设计方法,以及它在低功耗实现复杂信号处理系统中的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Low power design methodology for signal processing systems using lightweight dataflow techniques
Dataflow modeling techniques facilitate many aspects of design exploration and optimization for signal processing systems, such as efficient scheduling, memory management, and task synchronization. The lightweight dataflow (LWDF) programming methodology provides an abstract programming model that supports dataflow-based design and implementation of signal processing hardware and software components and systems. Previous work on LWDF techniques has emphasized their application to DSP software implementation. In this paper, we present new extensions of the LWDF methodology for effective integration with hardware description languages (HDLs), and we apply these extensions to develop efficient methods for low power DSP hardware implementation. Through a case study of a deep neural network application for vehicle classification, we demonstrate our proposed LWDF-based hardware design methodology, and its effectiveness in low power implementation of complex signal processing systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Real-time FPGA implementation of the Semi-Global Matching stereo vision algorithm for a 4K/UHD video stream Brain Blood Vessel Segmentation in Hyperspectral Images Through Linear Operators SCAPE: HW-Aware Clustering of Dataflow Actors for Tunable Scheduling Complexity Deep Recurrent Neural Network Performing Spectral Recurrence on Hyperspectral Images for Brain Tissue Classification TaPaFuzz - An FPGA-Accelerated Framework for RISC-V IoT Graybox Fuzzing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1