Rui Yang, Xin Xu, Zhaozhuo Xu, Chujiang Ding, Fangling Pu
{"title":"基于类激活映射的土地利用分类与目标检测对抗训练方法","authors":"Rui Yang, Xin Xu, Zhaozhuo Xu, Chujiang Ding, Fangling Pu","doi":"10.1109/IGARSS.2019.8897938","DOIUrl":null,"url":null,"abstract":"Interpretation of convolutional neural networks (CNNs) critically influence our understanding of deep learning models’ internal dynamics. In this paper, we demonstrate an interpretable training method, namely class activation mapping guided adversarial training (CAMAT), for two typical remote sensing tasks, land-use classification and object detection. We first generate class activation maps of the current batch training samples. Class activation map is a kind of class-specific saliency map that quantifies the contributions of a particular region in the image to the CNN prediction result. Then, high contribution regions in the training samples are occluded, and we leverage the partial masked images as the inputs for network training. Following this paradigm, the key areas for network learning and decision making are purposefully disturbed in the training phase, thus the trained model could have better performance in robustness and generalization. Experiments conducted on classic remote sensing datasets verified the outperforming effectiveness and efficiency of the proposed CAMAT.","PeriodicalId":13262,"journal":{"name":"IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium","volume":"28 1","pages":"9474-9477"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A Class Activation Mapping Guided Adversarial Training Method for Land-Use Classification and Object Detection\",\"authors\":\"Rui Yang, Xin Xu, Zhaozhuo Xu, Chujiang Ding, Fangling Pu\",\"doi\":\"10.1109/IGARSS.2019.8897938\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Interpretation of convolutional neural networks (CNNs) critically influence our understanding of deep learning models’ internal dynamics. In this paper, we demonstrate an interpretable training method, namely class activation mapping guided adversarial training (CAMAT), for two typical remote sensing tasks, land-use classification and object detection. We first generate class activation maps of the current batch training samples. Class activation map is a kind of class-specific saliency map that quantifies the contributions of a particular region in the image to the CNN prediction result. Then, high contribution regions in the training samples are occluded, and we leverage the partial masked images as the inputs for network training. Following this paradigm, the key areas for network learning and decision making are purposefully disturbed in the training phase, thus the trained model could have better performance in robustness and generalization. Experiments conducted on classic remote sensing datasets verified the outperforming effectiveness and efficiency of the proposed CAMAT.\",\"PeriodicalId\":13262,\"journal\":{\"name\":\"IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium\",\"volume\":\"28 1\",\"pages\":\"9474-9477\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IGARSS.2019.8897938\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS.2019.8897938","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Class Activation Mapping Guided Adversarial Training Method for Land-Use Classification and Object Detection
Interpretation of convolutional neural networks (CNNs) critically influence our understanding of deep learning models’ internal dynamics. In this paper, we demonstrate an interpretable training method, namely class activation mapping guided adversarial training (CAMAT), for two typical remote sensing tasks, land-use classification and object detection. We first generate class activation maps of the current batch training samples. Class activation map is a kind of class-specific saliency map that quantifies the contributions of a particular region in the image to the CNN prediction result. Then, high contribution regions in the training samples are occluded, and we leverage the partial masked images as the inputs for network training. Following this paradigm, the key areas for network learning and decision making are purposefully disturbed in the training phase, thus the trained model could have better performance in robustness and generalization. Experiments conducted on classic remote sensing datasets verified the outperforming effectiveness and efficiency of the proposed CAMAT.