{"title":"一种新型c-给体-nc-桥-cf-受体型嵌段共聚物的设计、合成、表征和加工","authors":"Thuong H. Nguyen, M. Hasib, Dan Wang, Sam S. Sun","doi":"10.6000/1929-5995.2016.05.01.3","DOIUrl":null,"url":null,"abstract":"A novel c-D-nc-B-cf-A (or DBfA ) type of block copolymer has been designed, synthesized, characterized, and preliminarily studied for optoectronic applications, where c-D is a conjugated donor type polyphenylenevinylene (PPV) block, nc-B is a non-conjugated bridge unit, and cf-A is a conjugated and fluorinated acceptor type PPV block. The frontier HOMO/LUMO orbital levels of D and fA conjugated blocks are -5.22/-3.06 and -6.10/-3.43 as determined from electrochemical and optical measurements. Photoluminescence emissions of D and fA are quenched in DBfA indicating a potential photo induced charge separation pathway between the donor and the acceptor blocks. Solid state thin film studies revealed more uniform and nano-scale phase separated morphologies in DBfA as compared to D/fA blend. A two orders of magnitude enhancement of photoelectric energy conversion efficiency was observed in a best solar cell fabricated from the DBfA block copolymer as compared to a best cell fabricated from the corresponding D/fA blend. Such significant photoelectric conversion enhancement could be attributed to the improvements of phase separated and bicontinously ordered nanostructure (BONS) morphology in DBfA as compared to D/fA .","PeriodicalId":16998,"journal":{"name":"Journal of Research Updates in Polymer Science","volume":"26 1","pages":"18-38"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Design, Synthesis, Characterizations, and Processing of a Novel c-Donor-nc-Bridge-cf-Acceptor Type Block Copolymer for Optoelecronic Applications\",\"authors\":\"Thuong H. Nguyen, M. Hasib, Dan Wang, Sam S. Sun\",\"doi\":\"10.6000/1929-5995.2016.05.01.3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel c-D-nc-B-cf-A (or DBfA ) type of block copolymer has been designed, synthesized, characterized, and preliminarily studied for optoectronic applications, where c-D is a conjugated donor type polyphenylenevinylene (PPV) block, nc-B is a non-conjugated bridge unit, and cf-A is a conjugated and fluorinated acceptor type PPV block. The frontier HOMO/LUMO orbital levels of D and fA conjugated blocks are -5.22/-3.06 and -6.10/-3.43 as determined from electrochemical and optical measurements. Photoluminescence emissions of D and fA are quenched in DBfA indicating a potential photo induced charge separation pathway between the donor and the acceptor blocks. Solid state thin film studies revealed more uniform and nano-scale phase separated morphologies in DBfA as compared to D/fA blend. A two orders of magnitude enhancement of photoelectric energy conversion efficiency was observed in a best solar cell fabricated from the DBfA block copolymer as compared to a best cell fabricated from the corresponding D/fA blend. Such significant photoelectric conversion enhancement could be attributed to the improvements of phase separated and bicontinously ordered nanostructure (BONS) morphology in DBfA as compared to D/fA .\",\"PeriodicalId\":16998,\"journal\":{\"name\":\"Journal of Research Updates in Polymer Science\",\"volume\":\"26 1\",\"pages\":\"18-38\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Research Updates in Polymer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.6000/1929-5995.2016.05.01.3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Research Updates in Polymer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6000/1929-5995.2016.05.01.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design, Synthesis, Characterizations, and Processing of a Novel c-Donor-nc-Bridge-cf-Acceptor Type Block Copolymer for Optoelecronic Applications
A novel c-D-nc-B-cf-A (or DBfA ) type of block copolymer has been designed, synthesized, characterized, and preliminarily studied for optoectronic applications, where c-D is a conjugated donor type polyphenylenevinylene (PPV) block, nc-B is a non-conjugated bridge unit, and cf-A is a conjugated and fluorinated acceptor type PPV block. The frontier HOMO/LUMO orbital levels of D and fA conjugated blocks are -5.22/-3.06 and -6.10/-3.43 as determined from electrochemical and optical measurements. Photoluminescence emissions of D and fA are quenched in DBfA indicating a potential photo induced charge separation pathway between the donor and the acceptor blocks. Solid state thin film studies revealed more uniform and nano-scale phase separated morphologies in DBfA as compared to D/fA blend. A two orders of magnitude enhancement of photoelectric energy conversion efficiency was observed in a best solar cell fabricated from the DBfA block copolymer as compared to a best cell fabricated from the corresponding D/fA blend. Such significant photoelectric conversion enhancement could be attributed to the improvements of phase separated and bicontinously ordered nanostructure (BONS) morphology in DBfA as compared to D/fA .