{"title":"284Og重粒子伴随裂变的统计模型研究","authors":"S. Subramanian, S. Selvaraj","doi":"10.15415/jnp.2021.91003","DOIUrl":null,"url":null,"abstract":"The structural characteristics of SHN can be investigated through the decay of SHN. In the present work ternary fission of SHN 284Og for two proton magic fixed third fragment 48Ca and 68Ni is studied at three different excitation energies 20, 35 and 50 MeV. Interestingly, 169Yb + 67Ni + 48Ca is having larger yield values and hence it is the most favoured way of fragmentation at intermediate excitation energy 35 MeV. It is observed that, asymmetric fission is favoured over symmetric fission at all the excitation for the third fragment 48Ca. Asymmetric fission is the most favoured with the fragment combination 148Sm + 68Ni + 68Ni for fixed A3 = 68Ni at all the excitations. Unlike the Ca third fragment, near symmetric fission is also favoured with 113Ag + 103Tc + 68Ni for A3 = 68Ni at all the three excitation energies.","PeriodicalId":16534,"journal":{"name":"Journal of Nuclear Physics, Material Sciences, Radiation and Applications","volume":"37 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Heavy Particle Accompanied Fission of 284Og - A Statistical Model Study\",\"authors\":\"S. Subramanian, S. Selvaraj\",\"doi\":\"10.15415/jnp.2021.91003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The structural characteristics of SHN can be investigated through the decay of SHN. In the present work ternary fission of SHN 284Og for two proton magic fixed third fragment 48Ca and 68Ni is studied at three different excitation energies 20, 35 and 50 MeV. Interestingly, 169Yb + 67Ni + 48Ca is having larger yield values and hence it is the most favoured way of fragmentation at intermediate excitation energy 35 MeV. It is observed that, asymmetric fission is favoured over symmetric fission at all the excitation for the third fragment 48Ca. Asymmetric fission is the most favoured with the fragment combination 148Sm + 68Ni + 68Ni for fixed A3 = 68Ni at all the excitations. Unlike the Ca third fragment, near symmetric fission is also favoured with 113Ag + 103Tc + 68Ni for A3 = 68Ni at all the three excitation energies.\",\"PeriodicalId\":16534,\"journal\":{\"name\":\"Journal of Nuclear Physics, Material Sciences, Radiation and Applications\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nuclear Physics, Material Sciences, Radiation and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15415/jnp.2021.91003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nuclear Physics, Material Sciences, Radiation and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15415/jnp.2021.91003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Heavy Particle Accompanied Fission of 284Og - A Statistical Model Study
The structural characteristics of SHN can be investigated through the decay of SHN. In the present work ternary fission of SHN 284Og for two proton magic fixed third fragment 48Ca and 68Ni is studied at three different excitation energies 20, 35 and 50 MeV. Interestingly, 169Yb + 67Ni + 48Ca is having larger yield values and hence it is the most favoured way of fragmentation at intermediate excitation energy 35 MeV. It is observed that, asymmetric fission is favoured over symmetric fission at all the excitation for the third fragment 48Ca. Asymmetric fission is the most favoured with the fragment combination 148Sm + 68Ni + 68Ni for fixed A3 = 68Ni at all the excitations. Unlike the Ca third fragment, near symmetric fission is also favoured with 113Ag + 103Tc + 68Ni for A3 = 68Ni at all the three excitation energies.