Hossein Farrokhbakht, Hadi Mardani Kamali, Natalie D. Enright Jerger, S. Hessabi
{"title":"海绵:一个可扩展的基于枢轴的开关门控引擎,用于降低NoC路由器的静态功率","authors":"Hossein Farrokhbakht, Hadi Mardani Kamali, Natalie D. Enright Jerger, S. Hessabi","doi":"10.1145/3218603.3218635","DOIUrl":null,"url":null,"abstract":"Due to high aggregate idle time of Networks-on-Chip (NoCs) routers in practical applications, power-gating techniques have been proposed to combat the ever-increasing ratio of static power. Nevertheless, the sporadic packet arrivals compromise the effectiveness of power-gating by incurring significant latency and energy overhead. In this paper, we propose a Scalable Pivot-based On/Off Gating Engine (SPONGE) which efficiently manages power-gating decisions and routing mechanism by adaptively selecting a small set of powered-on columns of routers and keeping the others in power-gated state. To this end, a router architecture augmented with a novel routing algorithm is proposed in which a packet can traverse powered-off routers without waking them up, and can only turn in predetermined powered-on routers. Experimental results on SPLASH-2 benchmarks demonstrate that, compared to the conventional power-gating method, SPONGE on average not only improves static power consumption by 81.7%, it also improves average packet latency by 63%.","PeriodicalId":20456,"journal":{"name":"Proceedings of the 2007 international symposium on Low power electronics and design (ISLPED '07)","volume":"104 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"SPONGE: A Scalable Pivot-based On/Off Gating Engine for Reducing Static Power in NoC Routers\",\"authors\":\"Hossein Farrokhbakht, Hadi Mardani Kamali, Natalie D. Enright Jerger, S. Hessabi\",\"doi\":\"10.1145/3218603.3218635\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to high aggregate idle time of Networks-on-Chip (NoCs) routers in practical applications, power-gating techniques have been proposed to combat the ever-increasing ratio of static power. Nevertheless, the sporadic packet arrivals compromise the effectiveness of power-gating by incurring significant latency and energy overhead. In this paper, we propose a Scalable Pivot-based On/Off Gating Engine (SPONGE) which efficiently manages power-gating decisions and routing mechanism by adaptively selecting a small set of powered-on columns of routers and keeping the others in power-gated state. To this end, a router architecture augmented with a novel routing algorithm is proposed in which a packet can traverse powered-off routers without waking them up, and can only turn in predetermined powered-on routers. Experimental results on SPLASH-2 benchmarks demonstrate that, compared to the conventional power-gating method, SPONGE on average not only improves static power consumption by 81.7%, it also improves average packet latency by 63%.\",\"PeriodicalId\":20456,\"journal\":{\"name\":\"Proceedings of the 2007 international symposium on Low power electronics and design (ISLPED '07)\",\"volume\":\"104 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2007 international symposium on Low power electronics and design (ISLPED '07)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3218603.3218635\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2007 international symposium on Low power electronics and design (ISLPED '07)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3218603.3218635","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
SPONGE: A Scalable Pivot-based On/Off Gating Engine for Reducing Static Power in NoC Routers
Due to high aggregate idle time of Networks-on-Chip (NoCs) routers in practical applications, power-gating techniques have been proposed to combat the ever-increasing ratio of static power. Nevertheless, the sporadic packet arrivals compromise the effectiveness of power-gating by incurring significant latency and energy overhead. In this paper, we propose a Scalable Pivot-based On/Off Gating Engine (SPONGE) which efficiently manages power-gating decisions and routing mechanism by adaptively selecting a small set of powered-on columns of routers and keeping the others in power-gated state. To this end, a router architecture augmented with a novel routing algorithm is proposed in which a packet can traverse powered-off routers without waking them up, and can only turn in predetermined powered-on routers. Experimental results on SPLASH-2 benchmarks demonstrate that, compared to the conventional power-gating method, SPONGE on average not only improves static power consumption by 81.7%, it also improves average packet latency by 63%.