求解多智能体随机博弈纳什均衡的价值函数与后悔最小化算法

Luping Liu, Wensheng Jia
{"title":"求解多智能体随机博弈纳什均衡的价值函数与后悔最小化算法","authors":"Luping Liu, Wensheng Jia","doi":"10.2991/ijcis.d.210520.001","DOIUrl":null,"url":null,"abstract":"In this paper, we study the value function with regret minimization algorithm for solving the Nash equilibrium of multi-agent stochastic game (MASG). To begin with, the idea of regret minimization is introduced to the value function, and the value functionwith regretminimization algorithm is designed. Furthermore, we analyze the effect of discount factor to the expected payoff. Finally, the single-agent stochastic game and spatial prisoner’s dilemma (SDP) are investigated in order to support the theoretical results. The simulation results show that when the temptation parameter is small, the cooperation strategy is dominant; when the temptation parameter is large, the defection strategy is dominant. Therefore, we improve the level of cooperation between agents by setting appropriate temptation parameters.","PeriodicalId":13602,"journal":{"name":"Int. J. Comput. Intell. Syst.","volume":"25 1","pages":"1633-1641"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"The Value Function with Regret Minimization Algorithm for Solving the Nash Equilibrium of Multi-Agent Stochastic Game\",\"authors\":\"Luping Liu, Wensheng Jia\",\"doi\":\"10.2991/ijcis.d.210520.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study the value function with regret minimization algorithm for solving the Nash equilibrium of multi-agent stochastic game (MASG). To begin with, the idea of regret minimization is introduced to the value function, and the value functionwith regretminimization algorithm is designed. Furthermore, we analyze the effect of discount factor to the expected payoff. Finally, the single-agent stochastic game and spatial prisoner’s dilemma (SDP) are investigated in order to support the theoretical results. The simulation results show that when the temptation parameter is small, the cooperation strategy is dominant; when the temptation parameter is large, the defection strategy is dominant. Therefore, we improve the level of cooperation between agents by setting appropriate temptation parameters.\",\"PeriodicalId\":13602,\"journal\":{\"name\":\"Int. J. Comput. Intell. Syst.\",\"volume\":\"25 1\",\"pages\":\"1633-1641\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Comput. Intell. Syst.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2991/ijcis.d.210520.001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Comput. Intell. Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2991/ijcis.d.210520.001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文研究了求解多智能体随机博弈纳什均衡的带遗憾最小化的值函数算法。首先,将后悔最小化的思想引入到价值函数中,设计了带有后悔最小化算法的价值函数。进一步分析了贴现因子对预期收益的影响。最后,研究了单代理随机博弈和空间囚徒困境(SDP),以支持理论结果。仿真结果表明,当诱惑参数较小时,合作策略占主导地位;当诱惑参数较大时,背叛策略占主导地位。因此,我们通过设置合适的诱惑参数来提高agent之间的合作水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Value Function with Regret Minimization Algorithm for Solving the Nash Equilibrium of Multi-Agent Stochastic Game
In this paper, we study the value function with regret minimization algorithm for solving the Nash equilibrium of multi-agent stochastic game (MASG). To begin with, the idea of regret minimization is introduced to the value function, and the value functionwith regretminimization algorithm is designed. Furthermore, we analyze the effect of discount factor to the expected payoff. Finally, the single-agent stochastic game and spatial prisoner’s dilemma (SDP) are investigated in order to support the theoretical results. The simulation results show that when the temptation parameter is small, the cooperation strategy is dominant; when the temptation parameter is large, the defection strategy is dominant. Therefore, we improve the level of cooperation between agents by setting appropriate temptation parameters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Skin Lesion Prediction and Classification Using Innovative Modified Long Short-Term Memory-Based Hybrid Optimization Algorithm A Multitask Learning-Based Vision Transformer for Plant Disease Localization and Classification Application of Deep Learning Techniques for the Optimization of Industrial Processes Through the Fusion of Sensory Data Enhancing the Performance of Vocational Education in the Digital Economy with the Application of Fuzzy Logic Algorithm Research on the Optimization Method of Project-Based Learning Design for Chinese Teaching Based on Interference-Tolerant Fast Convergence Zeroing Neural Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1