{"title":"高压变压器角环压板随温湿度变化特性研究","authors":"Suh Wang Byuck","doi":"10.4313/JKEM.2020.33.1.60","DOIUrl":null,"url":null,"abstract":"In this study, to develop angle ring pressboards for high voltage transformers, the radius and thickness are modified under the conditions of temperature and humidity. In particular, a pressboard with a thickness of 6 mm and a radius at the angled part were investigated based on the simulation of the principal stress from the angled optimization profile shape. As a result, by the appropriate application of a higher temperature, the solid insulation can be improved to reduce the moisture content for an optimized profile angle of a high voltage transformer. This also results in the improvement of the safety factor by 25%. It is determined that the electrical insulation properties of pressboards in high voltage transformers can be enhanced by improving their properties.","PeriodicalId":17325,"journal":{"name":"Journal of The Korean Institute of Electrical and Electronic Material Engineers","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Angle Ring Press Board Characteristic in Accordance with Temperature and Humidity for High Voltage Transformer\",\"authors\":\"Suh Wang Byuck\",\"doi\":\"10.4313/JKEM.2020.33.1.60\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, to develop angle ring pressboards for high voltage transformers, the radius and thickness are modified under the conditions of temperature and humidity. In particular, a pressboard with a thickness of 6 mm and a radius at the angled part were investigated based on the simulation of the principal stress from the angled optimization profile shape. As a result, by the appropriate application of a higher temperature, the solid insulation can be improved to reduce the moisture content for an optimized profile angle of a high voltage transformer. This also results in the improvement of the safety factor by 25%. It is determined that the electrical insulation properties of pressboards in high voltage transformers can be enhanced by improving their properties.\",\"PeriodicalId\":17325,\"journal\":{\"name\":\"Journal of The Korean Institute of Electrical and Electronic Material Engineers\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Korean Institute of Electrical and Electronic Material Engineers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4313/JKEM.2020.33.1.60\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Korean Institute of Electrical and Electronic Material Engineers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4313/JKEM.2020.33.1.60","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Angle Ring Press Board Characteristic in Accordance with Temperature and Humidity for High Voltage Transformer
In this study, to develop angle ring pressboards for high voltage transformers, the radius and thickness are modified under the conditions of temperature and humidity. In particular, a pressboard with a thickness of 6 mm and a radius at the angled part were investigated based on the simulation of the principal stress from the angled optimization profile shape. As a result, by the appropriate application of a higher temperature, the solid insulation can be improved to reduce the moisture content for an optimized profile angle of a high voltage transformer. This also results in the improvement of the safety factor by 25%. It is determined that the electrical insulation properties of pressboards in high voltage transformers can be enhanced by improving their properties.