高效液相色谱法测定人血浆和尿液中霉酚酸及其酚葡萄糖醛酸代谢物

Kamonthip Wiwattanawongsa , Erin L Heinzen, Daniel C Kemp, Robert E Dupuis, Philip C Smith
{"title":"高效液相色谱法测定人血浆和尿液中霉酚酸及其酚葡萄糖醛酸代谢物","authors":"Kamonthip Wiwattanawongsa ,&nbsp;Erin L Heinzen,&nbsp;Daniel C Kemp,&nbsp;Robert E Dupuis,&nbsp;Philip C Smith","doi":"10.1016/S0378-4347(01)00354-1","DOIUrl":null,"url":null,"abstract":"<div><p>Simultaneous determination of mycophenolic acid (MPA) and mycophenolate phenol glucuronide (MPAG) in plasma and urine was accomplished by isocratic HPLC with UV detection. Plasma was simply deproteinated with acetonitrile and concentrated, whereas urine was diluted prior to analysis. Linearity was observed from 0.2 to 50 μg/ml for both MPA and MPAG in plasma and from 1 to 50 μg/ml of MPA and 5 to 2000 μg/ml MPAG in urine with extraction recovery from plasma greater than 70%. Detection limits using 0.25 ml plasma were 0.080 and 0.20 μg/ml for MPA and MPAG, respectively. The method is more rapid and simple than previous assays for MPA and MPAG in biological fluids from patients.</p></div>","PeriodicalId":15463,"journal":{"name":"Journal of Chromatography B: Biomedical Sciences and Applications","volume":"763 1","pages":"Pages 35-45"},"PeriodicalIF":0.0000,"publicationDate":"2001-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0378-4347(01)00354-1","citationCount":"45","resultStr":"{\"title\":\"Determination of mycophenolic acid and its phenol glucuronide metabolite in human plasma and urine by high-performance liquid chromatography\",\"authors\":\"Kamonthip Wiwattanawongsa ,&nbsp;Erin L Heinzen,&nbsp;Daniel C Kemp,&nbsp;Robert E Dupuis,&nbsp;Philip C Smith\",\"doi\":\"10.1016/S0378-4347(01)00354-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Simultaneous determination of mycophenolic acid (MPA) and mycophenolate phenol glucuronide (MPAG) in plasma and urine was accomplished by isocratic HPLC with UV detection. Plasma was simply deproteinated with acetonitrile and concentrated, whereas urine was diluted prior to analysis. Linearity was observed from 0.2 to 50 μg/ml for both MPA and MPAG in plasma and from 1 to 50 μg/ml of MPA and 5 to 2000 μg/ml MPAG in urine with extraction recovery from plasma greater than 70%. Detection limits using 0.25 ml plasma were 0.080 and 0.20 μg/ml for MPA and MPAG, respectively. The method is more rapid and simple than previous assays for MPA and MPAG in biological fluids from patients.</p></div>\",\"PeriodicalId\":15463,\"journal\":{\"name\":\"Journal of Chromatography B: Biomedical Sciences and Applications\",\"volume\":\"763 1\",\"pages\":\"Pages 35-45\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S0378-4347(01)00354-1\",\"citationCount\":\"45\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chromatography B: Biomedical Sciences and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378434701003541\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chromatography B: Biomedical Sciences and Applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378434701003541","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 45

摘要

采用紫外检测等密度高效液相色谱法同时测定血浆和尿液中的霉酚酸(MPA)和霉酚酸苯酚葡糖苷(MPAG)。血浆简单地用乙腈脱蛋白并浓缩,而尿液在分析前被稀释。血浆中MPA和MPAG浓度在0.2 ~ 50 μg/ml范围内呈线性,尿液中MPA和MPAG浓度在1 ~ 50 μg/ml范围内呈线性,提取回收率均大于70%。0.25 ml血浆对MPA和MPAG的检出限分别为0.080和0.20 μg/ml。该方法比以往测定患者生物体液中MPA和MPAG的方法更快速、简单。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Determination of mycophenolic acid and its phenol glucuronide metabolite in human plasma and urine by high-performance liquid chromatography

Simultaneous determination of mycophenolic acid (MPA) and mycophenolate phenol glucuronide (MPAG) in plasma and urine was accomplished by isocratic HPLC with UV detection. Plasma was simply deproteinated with acetonitrile and concentrated, whereas urine was diluted prior to analysis. Linearity was observed from 0.2 to 50 μg/ml for both MPA and MPAG in plasma and from 1 to 50 μg/ml of MPA and 5 to 2000 μg/ml MPAG in urine with extraction recovery from plasma greater than 70%. Detection limits using 0.25 ml plasma were 0.080 and 0.20 μg/ml for MPA and MPAG, respectively. The method is more rapid and simple than previous assays for MPA and MPAG in biological fluids from patients.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
News Section Influence of various biological matrices (plasma, blood microdialysate) on chromatographic performance in the determination of β-blockers using an alkyl-diol silica precolumn for sample clean-up Highly sensitive analysis of the antifolate pemetrexed sodium, a new cancer agent, in human plasma and urine by high-performance liquid chromatography. Preliminary application of liquid chromatography–electrospray-ionization mass spectrometry to the detection of 5-methyltetrahydrofolic acid monoglutamate in human plasma Improved high-performance liquid chromatographic method to estimate aminosugars and its application to glycosaminoglycan determination in plasma and serum
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1