应用MSVR方法预测非线性位置控制系统的三自由度软作动器:仿真与实验

IF 1.9 Q3 COMPUTER SCIENCE, CYBERNETICS IEEE Systems Man and Cybernetics Magazine Pub Date : 2022-07-01 DOI:10.1109/msmc.2022.3153747
Toru Usami, M. Deng
{"title":"应用MSVR方法预测非线性位置控制系统的三自由度软作动器:仿真与实验","authors":"Toru Usami, M. Deng","doi":"10.1109/msmc.2022.3153747","DOIUrl":null,"url":null,"abstract":"In this article, a method used for tip-position coordinate control of a three-degree-of-freedom (DOF) soft actuator is proposed.In general, the behavior of pneumatic soft actuators is simple. However, the actuator, which consists of three artificial muscles, is capable of more complex motions compared to conventional soft actuators. By designing a model and control system that can handle multiple input patterns, various motions are possible. In addition, a machine learning technique called multioutput support vector regression (M-SVR) is used as a method to compensate for the complexity of multiple-input, multiple-output systems. First, a model that can be used to design a control system is offered. Then, a control system is designed, using the recommended model and machine learning approaches. Furthermore, the effectiveness of the proposed system is verified by experiments.","PeriodicalId":43649,"journal":{"name":"IEEE Systems Man and Cybernetics Magazine","volume":"19 1","pages":"61-69"},"PeriodicalIF":1.9000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Applying an MSVR Method to Forecast a Three-Degree-of-Freedom Soft Actuator for a Nonlinear Position Control System: Simulation and Experiments\",\"authors\":\"Toru Usami, M. Deng\",\"doi\":\"10.1109/msmc.2022.3153747\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, a method used for tip-position coordinate control of a three-degree-of-freedom (DOF) soft actuator is proposed.In general, the behavior of pneumatic soft actuators is simple. However, the actuator, which consists of three artificial muscles, is capable of more complex motions compared to conventional soft actuators. By designing a model and control system that can handle multiple input patterns, various motions are possible. In addition, a machine learning technique called multioutput support vector regression (M-SVR) is used as a method to compensate for the complexity of multiple-input, multiple-output systems. First, a model that can be used to design a control system is offered. Then, a control system is designed, using the recommended model and machine learning approaches. Furthermore, the effectiveness of the proposed system is verified by experiments.\",\"PeriodicalId\":43649,\"journal\":{\"name\":\"IEEE Systems Man and Cybernetics Magazine\",\"volume\":\"19 1\",\"pages\":\"61-69\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Systems Man and Cybernetics Magazine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/msmc.2022.3153747\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, CYBERNETICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Systems Man and Cybernetics Magazine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/msmc.2022.3153747","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, CYBERNETICS","Score":null,"Total":0}
引用次数: 4

摘要

提出了一种三自由度软作动器的尖端位置坐标控制方法。一般来说,气动软执行器的行为是简单的。然而,与传统的软致动器相比,由三个人造肌肉组成的致动器能够进行更复杂的运动。通过设计一个可以处理多种输入模式的模型和控制系统,可以实现各种运动。此外,一种称为多输出支持向量回归(M-SVR)的机器学习技术被用作补偿多输入多输出系统复杂性的方法。首先,给出了一个可用于设计控制系统的模型。然后,使用推荐的模型和机器学习方法设计了一个控制系统。最后,通过实验验证了该系统的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Applying an MSVR Method to Forecast a Three-Degree-of-Freedom Soft Actuator for a Nonlinear Position Control System: Simulation and Experiments
In this article, a method used for tip-position coordinate control of a three-degree-of-freedom (DOF) soft actuator is proposed.In general, the behavior of pneumatic soft actuators is simple. However, the actuator, which consists of three artificial muscles, is capable of more complex motions compared to conventional soft actuators. By designing a model and control system that can handle multiple input patterns, various motions are possible. In addition, a machine learning technique called multioutput support vector regression (M-SVR) is used as a method to compensate for the complexity of multiple-input, multiple-output systems. First, a model that can be used to design a control system is offered. Then, a control system is designed, using the recommended model and machine learning approaches. Furthermore, the effectiveness of the proposed system is verified by experiments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Systems Man and Cybernetics Magazine
IEEE Systems Man and Cybernetics Magazine COMPUTER SCIENCE, CYBERNETICS-
自引率
6.20%
发文量
60
期刊最新文献
Report of the First IEEE International Summer School (Online) on Environments—Classes, Agents, Roles, Groups, and Objects and Its Applications [Conference Reports] Saeid Nahavandi: Academic, Innovator, Technopreneur, and Thought Leader [Society News] IEEE Foundation IEEE Feedback Artificial Intelligence for the Social Internet of Things: Analysis and Modeling Using Collaborative Technologies [Special Section Editorial]
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1