石墨烯和氧化钇稳定氧化锆(YSZ)复合材料的动态响应

Christopher R. Johnson, J. Borg
{"title":"石墨烯和氧化钇稳定氧化锆(YSZ)复合材料的动态响应","authors":"Christopher R. Johnson, J. Borg","doi":"10.1115/hvis2019-042","DOIUrl":null,"url":null,"abstract":"\n A series of dynamic compaction studies were performed on yttria-stabilized zirconia (YSZ) and graphene composites using uniaxial flyer plate impact experiments. Studies aimed to characterize variation in dynamic behavior with respect to morphological differences for eight powdered YSZ and graphene compositions. Parameters of interest included YSZ particle size (nanometer or micrometer) and added graphene content (graphene weight percentage: 0%, 1%, 3%, 5%). Experiments were performed over impact velocities ranging between 315 and 586 m/s, resulting in pressures between 0.8 and 2.8 GPa. Hugoniot states measured appear to exhibit dependence on particle size and graphene content. Shock velocities tended to increase with graphene content and were generally larger in magnitude for the micrometer particle size YSZ. Compacted densities tended to increase as graphene content was increased and were generally larger in magnitude for the micrometer particle size YSZ samples. Resulting Hugoniot curves are compared and summarized to convey the dynamic behavior of the specimens.","PeriodicalId":6596,"journal":{"name":"2019 15th Hypervelocity Impact Symposium","volume":"69 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic response of graphene and yttria-stabilized zirconia (YSZ) composites\",\"authors\":\"Christopher R. Johnson, J. Borg\",\"doi\":\"10.1115/hvis2019-042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n A series of dynamic compaction studies were performed on yttria-stabilized zirconia (YSZ) and graphene composites using uniaxial flyer plate impact experiments. Studies aimed to characterize variation in dynamic behavior with respect to morphological differences for eight powdered YSZ and graphene compositions. Parameters of interest included YSZ particle size (nanometer or micrometer) and added graphene content (graphene weight percentage: 0%, 1%, 3%, 5%). Experiments were performed over impact velocities ranging between 315 and 586 m/s, resulting in pressures between 0.8 and 2.8 GPa. Hugoniot states measured appear to exhibit dependence on particle size and graphene content. Shock velocities tended to increase with graphene content and were generally larger in magnitude for the micrometer particle size YSZ. Compacted densities tended to increase as graphene content was increased and were generally larger in magnitude for the micrometer particle size YSZ samples. Resulting Hugoniot curves are compared and summarized to convey the dynamic behavior of the specimens.\",\"PeriodicalId\":6596,\"journal\":{\"name\":\"2019 15th Hypervelocity Impact Symposium\",\"volume\":\"69 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 15th Hypervelocity Impact Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/hvis2019-042\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 15th Hypervelocity Impact Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/hvis2019-042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

采用单轴飞片冲击实验对氧化钇稳定氧化锆(YSZ)和石墨烯复合材料进行了一系列动态压实研究。研究旨在表征八种粉末YSZ和石墨烯成分在形态差异方面的动态行为变化。感兴趣的参数包括YSZ的粒径(纳米或微米)和添加的石墨烯含量(石墨烯重量百分比:0%,1%,3%,5%)。实验在315 - 586 m/s的冲击速度范围内进行,产生的压力在0.8 - 2.8 GPa之间。测量的Hugoniot状态似乎与颗粒大小和石墨烯含量有关。冲击速度随着石墨烯含量的增加而增加,对于微米级粒径的YSZ来说,冲击速度通常更大。随着石墨烯含量的增加,压实密度趋于增加,对于微米粒径的YSZ样品,压实密度通常更大。对比和总结得到的Hugoniot曲线,以传达试件的动力行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dynamic response of graphene and yttria-stabilized zirconia (YSZ) composites
A series of dynamic compaction studies were performed on yttria-stabilized zirconia (YSZ) and graphene composites using uniaxial flyer plate impact experiments. Studies aimed to characterize variation in dynamic behavior with respect to morphological differences for eight powdered YSZ and graphene compositions. Parameters of interest included YSZ particle size (nanometer or micrometer) and added graphene content (graphene weight percentage: 0%, 1%, 3%, 5%). Experiments were performed over impact velocities ranging between 315 and 586 m/s, resulting in pressures between 0.8 and 2.8 GPa. Hugoniot states measured appear to exhibit dependence on particle size and graphene content. Shock velocities tended to increase with graphene content and were generally larger in magnitude for the micrometer particle size YSZ. Compacted densities tended to increase as graphene content was increased and were generally larger in magnitude for the micrometer particle size YSZ samples. Resulting Hugoniot curves are compared and summarized to convey the dynamic behavior of the specimens.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Impact Modeling for the Double Asteroid Redirection Test Mission Bulking as a Mechanism in the Failure of Advanced Ceramics Effects of Additional Body on Jet Velocity of Hyper-cumulation Assessment and Validation of Collision “Consequence” Method of Assessing Orbital Regime Risk Posed by Potential Satellite Conjunctions Dynamic response of graphene and yttria-stabilized zirconia (YSZ) composites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1