D. Solimini, Pere Tuset, Guillem Boquet, Xavier Vilajosana, F. V. Gallego
{"title":"通过重传整形提高IEEE 802.15.4g SUN的链路可靠性","authors":"D. Solimini, Pere Tuset, Guillem Boquet, Xavier Vilajosana, F. V. Gallego","doi":"10.1145/3416011.3424750","DOIUrl":null,"url":null,"abstract":"Packet re-transmissions are a common technique to improve link reliability in low-power wireless networks. However, since packet re-transmissions increase the end-device energy consumption and the network load, a maximum number of re-transmissions per packet is typically set, also considering the duty-cycle limitations imposed by radio-frequency regulations. Moreover, the number of re-transmissions per packet is typically set to a constant value, meaning that all packet re-transmissions are treated the same regardless of actual channel conditions (i.e., multi-path propagation or internal/external interference effects). Taking that into account, in this paper we propose and evaluate the concept of re-transmission shaping, a mechanism that manages packet re-transmissions to maximize link reliability, while minimizing energy consumption and meeting radio-frequency regulation constraints. The proposed re-transmission shaping mechanism operates by keeping track of unused packet re-transmissions and allocating additional re-transmission when the instantaneous link quality decreases due to channel impairments. To evaluate the re-transmission shaping mechanism we use trace-based simulations using a IEEE~802.15.4g SUN data-set and two widely used metrics, the PDR (Packet Delivery Ratio) and the RNP (Required Number of Packets). The obtained results show that re-transmission shaping is a useful mechanism to improve link reliability of low-power wireless communications, as it can increase PDR from 77.9% to 99.2% while sustaining a RNP of 2.35 re-transmissions per packet, when compared to using a single re-transmission per packet.","PeriodicalId":55557,"journal":{"name":"Ad Hoc & Sensor Wireless Networks","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2020-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Improving Link Reliability of IEEE 802.15.4g SUN with Re-Transmission Shaping\",\"authors\":\"D. Solimini, Pere Tuset, Guillem Boquet, Xavier Vilajosana, F. V. Gallego\",\"doi\":\"10.1145/3416011.3424750\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Packet re-transmissions are a common technique to improve link reliability in low-power wireless networks. However, since packet re-transmissions increase the end-device energy consumption and the network load, a maximum number of re-transmissions per packet is typically set, also considering the duty-cycle limitations imposed by radio-frequency regulations. Moreover, the number of re-transmissions per packet is typically set to a constant value, meaning that all packet re-transmissions are treated the same regardless of actual channel conditions (i.e., multi-path propagation or internal/external interference effects). Taking that into account, in this paper we propose and evaluate the concept of re-transmission shaping, a mechanism that manages packet re-transmissions to maximize link reliability, while minimizing energy consumption and meeting radio-frequency regulation constraints. The proposed re-transmission shaping mechanism operates by keeping track of unused packet re-transmissions and allocating additional re-transmission when the instantaneous link quality decreases due to channel impairments. To evaluate the re-transmission shaping mechanism we use trace-based simulations using a IEEE~802.15.4g SUN data-set and two widely used metrics, the PDR (Packet Delivery Ratio) and the RNP (Required Number of Packets). The obtained results show that re-transmission shaping is a useful mechanism to improve link reliability of low-power wireless communications, as it can increase PDR from 77.9% to 99.2% while sustaining a RNP of 2.35 re-transmissions per packet, when compared to using a single re-transmission per packet.\",\"PeriodicalId\":55557,\"journal\":{\"name\":\"Ad Hoc & Sensor Wireless Networks\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2020-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ad Hoc & Sensor Wireless Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3416011.3424750\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ad Hoc & Sensor Wireless Networks","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3416011.3424750","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Improving Link Reliability of IEEE 802.15.4g SUN with Re-Transmission Shaping
Packet re-transmissions are a common technique to improve link reliability in low-power wireless networks. However, since packet re-transmissions increase the end-device energy consumption and the network load, a maximum number of re-transmissions per packet is typically set, also considering the duty-cycle limitations imposed by radio-frequency regulations. Moreover, the number of re-transmissions per packet is typically set to a constant value, meaning that all packet re-transmissions are treated the same regardless of actual channel conditions (i.e., multi-path propagation or internal/external interference effects). Taking that into account, in this paper we propose and evaluate the concept of re-transmission shaping, a mechanism that manages packet re-transmissions to maximize link reliability, while minimizing energy consumption and meeting radio-frequency regulation constraints. The proposed re-transmission shaping mechanism operates by keeping track of unused packet re-transmissions and allocating additional re-transmission when the instantaneous link quality decreases due to channel impairments. To evaluate the re-transmission shaping mechanism we use trace-based simulations using a IEEE~802.15.4g SUN data-set and two widely used metrics, the PDR (Packet Delivery Ratio) and the RNP (Required Number of Packets). The obtained results show that re-transmission shaping is a useful mechanism to improve link reliability of low-power wireless communications, as it can increase PDR from 77.9% to 99.2% while sustaining a RNP of 2.35 re-transmissions per packet, when compared to using a single re-transmission per packet.
期刊介绍:
Ad Hoc & Sensor Wireless Networks seeks to provide an opportunity for researchers from computer science, engineering and mathematical backgrounds to disseminate and exchange knowledge in the rapidly emerging field of ad hoc and sensor wireless networks. It will comprehensively cover physical, data-link, network and transport layers, as well as application, security, simulation and power management issues in sensor, local area, satellite, vehicular, personal, and mobile ad hoc networks.