{"title":"具有比例延迟的模糊双向联想记忆神经网络的全局耗散","authors":"C. Aouiti, R. Sakthivel, F. Touati","doi":"10.22111/IJFS.2021.5914","DOIUrl":null,"url":null,"abstract":"This article aimed to investigate the problem of global dissipativity of Fuzzy Bidirectional Associative Memory Neural Networks (FBAMNNs- for short) with proportional delays. Via Lyapunov Functionals (LFs- for short) and Linear Matrix Inequality (LMI- for short) approach, we obtained new sufficient conditions to guarantee the global dissipativity and global exponential dissipativity of the proposed model. In addition, two different types of activation functions are considered, including general bounded and Lipschitz-type activation functions. Moreover, the globally attractive and globally exponentially attractive sets are presented. Lastly, two numerical examples are given to illustrate the effectiveness of the developed results.","PeriodicalId":54920,"journal":{"name":"Iranian Journal of Fuzzy Systems","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Global dissipativity of fuzzy bidirectional associative memory neural networks with proportional delays\",\"authors\":\"C. Aouiti, R. Sakthivel, F. Touati\",\"doi\":\"10.22111/IJFS.2021.5914\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article aimed to investigate the problem of global dissipativity of Fuzzy Bidirectional Associative Memory Neural Networks (FBAMNNs- for short) with proportional delays. Via Lyapunov Functionals (LFs- for short) and Linear Matrix Inequality (LMI- for short) approach, we obtained new sufficient conditions to guarantee the global dissipativity and global exponential dissipativity of the proposed model. In addition, two different types of activation functions are considered, including general bounded and Lipschitz-type activation functions. Moreover, the globally attractive and globally exponentially attractive sets are presented. Lastly, two numerical examples are given to illustrate the effectiveness of the developed results.\",\"PeriodicalId\":54920,\"journal\":{\"name\":\"Iranian Journal of Fuzzy Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2021-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iranian Journal of Fuzzy Systems\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.22111/IJFS.2021.5914\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Fuzzy Systems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.22111/IJFS.2021.5914","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Global dissipativity of fuzzy bidirectional associative memory neural networks with proportional delays
This article aimed to investigate the problem of global dissipativity of Fuzzy Bidirectional Associative Memory Neural Networks (FBAMNNs- for short) with proportional delays. Via Lyapunov Functionals (LFs- for short) and Linear Matrix Inequality (LMI- for short) approach, we obtained new sufficient conditions to guarantee the global dissipativity and global exponential dissipativity of the proposed model. In addition, two different types of activation functions are considered, including general bounded and Lipschitz-type activation functions. Moreover, the globally attractive and globally exponentially attractive sets are presented. Lastly, two numerical examples are given to illustrate the effectiveness of the developed results.
期刊介绍:
The two-monthly Iranian Journal of Fuzzy Systems (IJFS) aims to provide an international forum for refereed original research works in the theory and applications of fuzzy sets and systems in the areas of foundations, pure mathematics, artificial intelligence, control, robotics, data analysis, data mining, decision making, finance and management, information systems, operations research, pattern recognition and image processing, soft computing and uncertainty modeling.
Manuscripts submitted to the IJFS must be original unpublished work and should not be in consideration for publication elsewhere.