视频中情感识别的递归神经网络

S. Kahou, Vincent Michalski, K. Konda, R. Memisevic, C. Pal
{"title":"视频中情感识别的递归神经网络","authors":"S. Kahou, Vincent Michalski, K. Konda, R. Memisevic, C. Pal","doi":"10.1145/2818346.2830596","DOIUrl":null,"url":null,"abstract":"Deep learning based approaches to facial analysis and video analysis have recently demonstrated high performance on a variety of key tasks such as face recognition, emotion recognition and activity recognition. In the case of video, information often must be aggregated across a variable length sequence of frames to produce a classification result. Prior work using convolutional neural networks (CNNs) for emotion recognition in video has relied on temporal averaging and pooling operations reminiscent of widely used approaches for the spatial aggregation of information. Recurrent neural networks (RNNs) have seen an explosion of recent interest as they yield state-of-the-art performance on a variety of sequence analysis tasks. RNNs provide an attractive framework for propagating information over a sequence using a continuous valued hidden layer representation. In this work we present a complete system for the 2015 Emotion Recognition in the Wild (EmotiW) Challenge. We focus our presentation and experimental analysis on a hybrid CNN-RNN architecture for facial expression analysis that can outperform a previously applied CNN approach using temporal averaging for aggregation.","PeriodicalId":20486,"journal":{"name":"Proceedings of the 2015 ACM on International Conference on Multimodal Interaction","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2015-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"321","resultStr":"{\"title\":\"Recurrent Neural Networks for Emotion Recognition in Video\",\"authors\":\"S. Kahou, Vincent Michalski, K. Konda, R. Memisevic, C. Pal\",\"doi\":\"10.1145/2818346.2830596\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep learning based approaches to facial analysis and video analysis have recently demonstrated high performance on a variety of key tasks such as face recognition, emotion recognition and activity recognition. In the case of video, information often must be aggregated across a variable length sequence of frames to produce a classification result. Prior work using convolutional neural networks (CNNs) for emotion recognition in video has relied on temporal averaging and pooling operations reminiscent of widely used approaches for the spatial aggregation of information. Recurrent neural networks (RNNs) have seen an explosion of recent interest as they yield state-of-the-art performance on a variety of sequence analysis tasks. RNNs provide an attractive framework for propagating information over a sequence using a continuous valued hidden layer representation. In this work we present a complete system for the 2015 Emotion Recognition in the Wild (EmotiW) Challenge. We focus our presentation and experimental analysis on a hybrid CNN-RNN architecture for facial expression analysis that can outperform a previously applied CNN approach using temporal averaging for aggregation.\",\"PeriodicalId\":20486,\"journal\":{\"name\":\"Proceedings of the 2015 ACM on International Conference on Multimodal Interaction\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"321\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2015 ACM on International Conference on Multimodal Interaction\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2818346.2830596\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2015 ACM on International Conference on Multimodal Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2818346.2830596","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 321

摘要

基于深度学习的面部分析和视频分析方法最近在面部识别、情绪识别和活动识别等各种关键任务上表现出了高性能。在视频的情况下,信息通常必须在可变长度的帧序列中聚合,以产生分类结果。先前使用卷积神经网络(cnn)进行视频情感识别的工作依赖于时间平均和池化操作,这让人想起广泛使用的信息空间聚合方法。递归神经网络(RNNs)在各种序列分析任务中产生了最先进的性能,最近引起了人们的兴趣。rnn为使用连续值隐藏层表示在序列上传播信息提供了一个有吸引力的框架。在这项工作中,我们为2015年野外情绪识别(EmotiW)挑战赛提供了一个完整的系统。我们的演示和实验分析集中在用于面部表情分析的混合CNN- rnn架构上,该架构可以优于先前使用时间平均进行聚合的CNN方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Recurrent Neural Networks for Emotion Recognition in Video
Deep learning based approaches to facial analysis and video analysis have recently demonstrated high performance on a variety of key tasks such as face recognition, emotion recognition and activity recognition. In the case of video, information often must be aggregated across a variable length sequence of frames to produce a classification result. Prior work using convolutional neural networks (CNNs) for emotion recognition in video has relied on temporal averaging and pooling operations reminiscent of widely used approaches for the spatial aggregation of information. Recurrent neural networks (RNNs) have seen an explosion of recent interest as they yield state-of-the-art performance on a variety of sequence analysis tasks. RNNs provide an attractive framework for propagating information over a sequence using a continuous valued hidden layer representation. In this work we present a complete system for the 2015 Emotion Recognition in the Wild (EmotiW) Challenge. We focus our presentation and experimental analysis on a hybrid CNN-RNN architecture for facial expression analysis that can outperform a previously applied CNN approach using temporal averaging for aggregation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multimodal Assessment of Teaching Behavior in Immersive Rehearsal Environment-TeachLivE Multimodal Capture of Teacher-Student Interactions for Automated Dialogic Analysis in Live Classrooms Retrieving Target Gestures Toward Speech Driven Animation with Meaningful Behaviors Micro-opinion Sentiment Intensity Analysis and Summarization in Online Videos Session details: Demonstrations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1