利用计算模型研究遗传相互作用对心血管疾病的影响

S. Priya, R. Manavalan
{"title":"利用计算模型研究遗传相互作用对心血管疾病的影响","authors":"S. Priya, R. Manavalan","doi":"10.2174/2211550109999201008125800","DOIUrl":null,"url":null,"abstract":"\n\n The diseases in the heart and blood vessels such as heart attack, Coronary\nArtery Disease, Myocardial Infarction (MI), High Blood Pressure, and Obesity, are generally referred\nto as Cardiovascular Diseases (CVD). The risk factors of CVD include gender, age, cholesterol/\nLDL, family history, hypertension, smoking, and genetic and environmental factors. Genome-\nWide Association Studies (GWAS) focus on identifying the genetic interactions and genetic architectures\nof CVD.\n\n\n\nGenetic interactions or Epistasis infer the interactions between two or more genes where\none gene masks the traits of another gene and increases the susceptibility of CVD. To identify the\nEpistasis relationship through biological or laboratory methods needs an enormous workforce and\nmore cost. Hence, this paper presents the review of various statistical and Machine learning approaches\nso far proposed to detect genetic interaction effects for the identification of various Cardiovascular\ndiseases such as Coronary Artery Disease (CAD), MI, Hypertension, HDL and Lipid\nphenotypes data, and Body Mass Index dataset.\n\n\n\nThis study reveals that various computational models identified the candidate genes\nsuch as AGT, PAI-1, ACE, PTPN22, MTHR, FAM107B, ZNF107, PON1, PON2, GTF2E1, ADGRB3,\nand FTO, which play a major role in genetic interactions for the causes of CVDs. The benefits,\nlimitations, and issues of the various computational techniques for the evolution of epistasis responsible\nfor cardiovascular diseases are exhibited.\n","PeriodicalId":10850,"journal":{"name":"Current Biotechnology","volume":"93 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Genetic Interactions Effects of Cardiovascular Disorder Using Computational Models: A Review\",\"authors\":\"S. Priya, R. Manavalan\",\"doi\":\"10.2174/2211550109999201008125800\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n\\n The diseases in the heart and blood vessels such as heart attack, Coronary\\nArtery Disease, Myocardial Infarction (MI), High Blood Pressure, and Obesity, are generally referred\\nto as Cardiovascular Diseases (CVD). The risk factors of CVD include gender, age, cholesterol/\\nLDL, family history, hypertension, smoking, and genetic and environmental factors. Genome-\\nWide Association Studies (GWAS) focus on identifying the genetic interactions and genetic architectures\\nof CVD.\\n\\n\\n\\nGenetic interactions or Epistasis infer the interactions between two or more genes where\\none gene masks the traits of another gene and increases the susceptibility of CVD. To identify the\\nEpistasis relationship through biological or laboratory methods needs an enormous workforce and\\nmore cost. Hence, this paper presents the review of various statistical and Machine learning approaches\\nso far proposed to detect genetic interaction effects for the identification of various Cardiovascular\\ndiseases such as Coronary Artery Disease (CAD), MI, Hypertension, HDL and Lipid\\nphenotypes data, and Body Mass Index dataset.\\n\\n\\n\\nThis study reveals that various computational models identified the candidate genes\\nsuch as AGT, PAI-1, ACE, PTPN22, MTHR, FAM107B, ZNF107, PON1, PON2, GTF2E1, ADGRB3,\\nand FTO, which play a major role in genetic interactions for the causes of CVDs. The benefits,\\nlimitations, and issues of the various computational techniques for the evolution of epistasis responsible\\nfor cardiovascular diseases are exhibited.\\n\",\"PeriodicalId\":10850,\"journal\":{\"name\":\"Current Biotechnology\",\"volume\":\"93 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Biotechnology\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.2174/2211550109999201008125800\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Biotechnology","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.2174/2211550109999201008125800","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

心脏病、冠状动脉疾病、心肌梗死(MI)、高血压和肥胖等心脏和血管疾病通常称为心血管疾病(CVD)。心血管疾病的危险因素包括性别、年龄、胆固醇/低密度脂蛋白、家族史、高血压、吸烟、遗传和环境因素。全基因组关联研究(GWAS)的重点是确定心血管疾病的遗传相互作用和遗传结构。遗传相互作用或上位性是指两个或多个基因之间的相互作用,其中一个基因掩盖了另一个基因的特征,从而增加了心血管疾病的易感性。通过生物学或实验室方法来确定上位关系需要大量的劳动力和更多的成本。因此,本文介绍了迄今为止提出的各种统计和机器学习方法,用于检测各种心血管疾病(如冠状动脉疾病(CAD)、心肌梗死、高血压、高密度脂蛋白和脂质表型数据以及体重指数数据)的遗传相互作用效应。本研究表明,各种计算模型确定了候选基因,如AGT、PAI-1、ACE、PTPN22、MTHR、FAM107B、ZNF107、PON1、PON2、GTF2E1、ADGRB3和FTO,这些基因在导致心血管疾病的遗传相互作用中起主要作用。展示了各种计算技术对心血管疾病上位性进化的益处、局限性和问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Genetic Interactions Effects of Cardiovascular Disorder Using Computational Models: A Review
The diseases in the heart and blood vessels such as heart attack, Coronary Artery Disease, Myocardial Infarction (MI), High Blood Pressure, and Obesity, are generally referred to as Cardiovascular Diseases (CVD). The risk factors of CVD include gender, age, cholesterol/ LDL, family history, hypertension, smoking, and genetic and environmental factors. Genome- Wide Association Studies (GWAS) focus on identifying the genetic interactions and genetic architectures of CVD. Genetic interactions or Epistasis infer the interactions between two or more genes where one gene masks the traits of another gene and increases the susceptibility of CVD. To identify the Epistasis relationship through biological or laboratory methods needs an enormous workforce and more cost. Hence, this paper presents the review of various statistical and Machine learning approaches so far proposed to detect genetic interaction effects for the identification of various Cardiovascular diseases such as Coronary Artery Disease (CAD), MI, Hypertension, HDL and Lipid phenotypes data, and Body Mass Index dataset. This study reveals that various computational models identified the candidate genes such as AGT, PAI-1, ACE, PTPN22, MTHR, FAM107B, ZNF107, PON1, PON2, GTF2E1, ADGRB3, and FTO, which play a major role in genetic interactions for the causes of CVDs. The benefits, limitations, and issues of the various computational techniques for the evolution of epistasis responsible for cardiovascular diseases are exhibited.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Unleashing the Potential of Gut Microbiota: Cholesterol Reduction Through Microbial Bile Acid Metabolism Exploring the Depths of Marine Biotechnology: Discoveries, Diversity, and Future Horizons Factors Affecting the Micropropagation of Sapindus trifoliatus from Nodal Explants of Mature Tree Investigation on Cross-correction of Cystinosis through Genetically Engineered Cells Secreting Cystinosin In vitro Regeneration of Multiple Shoots in Abelmoschus esculentus (L.) Moench (Okra) via Apical Shoot Meristem Culture
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1