Hopfield网络:从优化到自适应控制

M. Atencia, G. Joya
{"title":"Hopfield网络:从优化到自适应控制","authors":"M. Atencia, G. Joya","doi":"10.1109/IJCNN.2015.7280368","DOIUrl":null,"url":null,"abstract":"This paper proposes an adaptive control algorithm, which is designed by adding a parametric identification method to a non-linear controller. The identification module is built upon the Hopfield neural network, resulting in an unconventional network with time-varying weights and biases. The convergence of the estimations of the parameters of a dynamical system was proved in previous work, as long as the system inputs can be freely manipulated to provide persistent excitation. Henceforth the behaviour of the closed-loop system, when the inputs result from the controller equations, is here analyzed in order to assess both the tracking performance of the full adaptive controller and the identification ability of the neural estimator. The algorithm is applied to an idealized robotic system with two joints, whose positions and velocities are required to follow, as closely as possible, a prescribed reference trajectory. The simulation results show a satisfactory control performance, since the demanded trajectory is almost accurately followed. The estimated values also converge to the correct parameters, as long as the controller provides sufficiently rich signals to the system. The results are similar to a conventional least-squares adaptive controller, with a much lower computational cost.","PeriodicalId":6539,"journal":{"name":"2015 International Joint Conference on Neural Networks (IJCNN)","volume":"70 1","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Hopfield networks: from optimization to adaptive control\",\"authors\":\"M. Atencia, G. Joya\",\"doi\":\"10.1109/IJCNN.2015.7280368\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes an adaptive control algorithm, which is designed by adding a parametric identification method to a non-linear controller. The identification module is built upon the Hopfield neural network, resulting in an unconventional network with time-varying weights and biases. The convergence of the estimations of the parameters of a dynamical system was proved in previous work, as long as the system inputs can be freely manipulated to provide persistent excitation. Henceforth the behaviour of the closed-loop system, when the inputs result from the controller equations, is here analyzed in order to assess both the tracking performance of the full adaptive controller and the identification ability of the neural estimator. The algorithm is applied to an idealized robotic system with two joints, whose positions and velocities are required to follow, as closely as possible, a prescribed reference trajectory. The simulation results show a satisfactory control performance, since the demanded trajectory is almost accurately followed. The estimated values also converge to the correct parameters, as long as the controller provides sufficiently rich signals to the system. The results are similar to a conventional least-squares adaptive controller, with a much lower computational cost.\",\"PeriodicalId\":6539,\"journal\":{\"name\":\"2015 International Joint Conference on Neural Networks (IJCNN)\",\"volume\":\"70 1\",\"pages\":\"1-8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Joint Conference on Neural Networks (IJCNN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.2015.7280368\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Joint Conference on Neural Networks (IJCNN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2015.7280368","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了一种自适应控制算法,该算法通过在非线性控制器中加入参数辨识方法来设计。识别模块建立在Hopfield神经网络的基础上,形成了一个具有时变权重和偏差的非常规网络。在以前的工作中,只要系统输入能够被自由操纵以提供持续激励,就证明了动力系统参数估计的收敛性。因此,当输入来自控制器方程时,本文分析了闭环系统的行为,以评估全自适应控制器的跟踪性能和神经估计器的识别能力。将该算法应用于具有两个关节的理想机器人系统,该系统要求其位置和速度尽可能地遵循指定的参考轨迹。仿真结果表明,该控制系统具有良好的控制性能,几乎准确地遵循了所要求的轨迹。只要控制器向系统提供足够丰富的信号,估计值也收敛到正确的参数。结果与传统的最小二乘自适应控制器相似,但计算成本要低得多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hopfield networks: from optimization to adaptive control
This paper proposes an adaptive control algorithm, which is designed by adding a parametric identification method to a non-linear controller. The identification module is built upon the Hopfield neural network, resulting in an unconventional network with time-varying weights and biases. The convergence of the estimations of the parameters of a dynamical system was proved in previous work, as long as the system inputs can be freely manipulated to provide persistent excitation. Henceforth the behaviour of the closed-loop system, when the inputs result from the controller equations, is here analyzed in order to assess both the tracking performance of the full adaptive controller and the identification ability of the neural estimator. The algorithm is applied to an idealized robotic system with two joints, whose positions and velocities are required to follow, as closely as possible, a prescribed reference trajectory. The simulation results show a satisfactory control performance, since the demanded trajectory is almost accurately followed. The estimated values also converge to the correct parameters, as long as the controller provides sufficiently rich signals to the system. The results are similar to a conventional least-squares adaptive controller, with a much lower computational cost.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Efficient conformal regressors using bagged neural nets Repeated play of the SVM game as a means of adaptive classification Unit commitment considering multiple charging and discharging scenarios of plug-in electric vehicles High-dimensional function approximation using local linear embedding A label compression coding approach through maximizing dependence between features and labels for multi-label classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1