澳大利亚医药供应链中的大数据分析

M. Ziaee, H. Shee, A. Sohal
{"title":"澳大利亚医药供应链中的大数据分析","authors":"M. Ziaee, H. Shee, A. Sohal","doi":"10.1108/imds-05-2022-0309","DOIUrl":null,"url":null,"abstract":"PurposeDrawing on information processing view (IPV) theory, the objective of this study is to explore big data analytics (BDA) in pharmaceutical supply chain (PSC) for better business intelligence. Supply chain operations reference (SCOR) model is used to identify and discuss the likely benefits of BDA adoption in five processes: plan, source, make, deliver and return.Design/methodology/approachSemi-structured interviews with managers in a triad comprising pharmaceutical manufacturers, wholesalers/distributors and public hospital pharmacies were undertaken. NVivo software was used for thematic data analysis.FindingsThe findings revealed that BDA capability would be more practical and helpful in planning, delivery and return processes within PSC. Sourcing and making processes are perceived to be less beneficial.Practical implicationsThe study informs managers about the strategic role of BDA capabilities in SCOR processes for improved business intelligence.Originality/valueAdoption of BDA in SCOR processes within PSC is a step towards resolving the challenges of drug shortages, counterfeiting and inventory optimisation through timely decision. Despite its innumerable benefits of BDA, Australian PSC is far behind in BDA investment. The study advances the IPV theory by illustrating and strengthening the fact that data sharing and analytics can generate real-time business intelligence helping in better health care support through BDA-enabled PSC.","PeriodicalId":13427,"journal":{"name":"Ind. Manag. Data Syst.","volume":"57 1","pages":"1310-1335"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Big data analytics in Australian pharmaceutical supply chain\",\"authors\":\"M. Ziaee, H. Shee, A. Sohal\",\"doi\":\"10.1108/imds-05-2022-0309\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"PurposeDrawing on information processing view (IPV) theory, the objective of this study is to explore big data analytics (BDA) in pharmaceutical supply chain (PSC) for better business intelligence. Supply chain operations reference (SCOR) model is used to identify and discuss the likely benefits of BDA adoption in five processes: plan, source, make, deliver and return.Design/methodology/approachSemi-structured interviews with managers in a triad comprising pharmaceutical manufacturers, wholesalers/distributors and public hospital pharmacies were undertaken. NVivo software was used for thematic data analysis.FindingsThe findings revealed that BDA capability would be more practical and helpful in planning, delivery and return processes within PSC. Sourcing and making processes are perceived to be less beneficial.Practical implicationsThe study informs managers about the strategic role of BDA capabilities in SCOR processes for improved business intelligence.Originality/valueAdoption of BDA in SCOR processes within PSC is a step towards resolving the challenges of drug shortages, counterfeiting and inventory optimisation through timely decision. Despite its innumerable benefits of BDA, Australian PSC is far behind in BDA investment. The study advances the IPV theory by illustrating and strengthening the fact that data sharing and analytics can generate real-time business intelligence helping in better health care support through BDA-enabled PSC.\",\"PeriodicalId\":13427,\"journal\":{\"name\":\"Ind. Manag. Data Syst.\",\"volume\":\"57 1\",\"pages\":\"1310-1335\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ind. Manag. Data Syst.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1108/imds-05-2022-0309\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ind. Manag. Data Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/imds-05-2022-0309","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

目的利用信息处理观点(IPV)理论,探讨大数据分析(BDA)在医药供应链(PSC)中的应用,以提高商业智能。供应链操作参考(SCOR)模型用于识别和讨论在五个过程中采用BDA可能带来的好处:计划、来源、制造、交付和回报。设计/方法/方法对药品制造商、批发商/分销商和公立医院药房的管理人员进行了半结构化访谈。采用NVivo软件进行专题数据分析。研究结果表明,BDA能力在PSC的规划、交付和退货过程中更加实用和有用。采购和制造过程被认为是不太有益的。实际意义本研究让管理者了解了BDA能力在SCOR过程中为改进商业智能所扮演的战略角色。原创性/价值在PSC的SCOR流程中采用BDA是通过及时决策解决药品短缺、假冒和库存优化挑战的一步。尽管BDA带来了无数好处,但澳大利亚PSC在BDA投资方面远远落后。该研究通过说明和加强数据共享和分析可以生成实时商业智能,从而通过支持bda的PSC帮助提供更好的医疗保健支持,从而推进了IPV理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Big data analytics in Australian pharmaceutical supply chain
PurposeDrawing on information processing view (IPV) theory, the objective of this study is to explore big data analytics (BDA) in pharmaceutical supply chain (PSC) for better business intelligence. Supply chain operations reference (SCOR) model is used to identify and discuss the likely benefits of BDA adoption in five processes: plan, source, make, deliver and return.Design/methodology/approachSemi-structured interviews with managers in a triad comprising pharmaceutical manufacturers, wholesalers/distributors and public hospital pharmacies were undertaken. NVivo software was used for thematic data analysis.FindingsThe findings revealed that BDA capability would be more practical and helpful in planning, delivery and return processes within PSC. Sourcing and making processes are perceived to be less beneficial.Practical implicationsThe study informs managers about the strategic role of BDA capabilities in SCOR processes for improved business intelligence.Originality/valueAdoption of BDA in SCOR processes within PSC is a step towards resolving the challenges of drug shortages, counterfeiting and inventory optimisation through timely decision. Despite its innumerable benefits of BDA, Australian PSC is far behind in BDA investment. The study advances the IPV theory by illustrating and strengthening the fact that data sharing and analytics can generate real-time business intelligence helping in better health care support through BDA-enabled PSC.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Big data analytics capability in building supply chain resilience: the moderating effect of innovation-focused complementary assets Effects of intrinsic and extrinsic cues on customer behavior in live streaming: evidence from an eye-tracking experiment How doctor image features engage health science short video viewers? Investigating the age and gender bias The impact of enterprise social media usage on employee creativity: a self-regulation perspective Implementation of information and communication technologies in fruit and vegetable supply chain: a systematic literature review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1