{"title":"随机约束满足问题","authors":"A. Coja-Oghlan","doi":"10.4204/EPTCS.9.4","DOIUrl":null,"url":null,"abstract":"Random instances of constraint satisfaction problems such as k-SAT provide challenging benchmarks. If there are m constraints over n variables there is typically a large range of densities r=m/n where solutions are known to exist with probability close to one due to non-constructive arguments. However, no algorithms are known to find solutions efficiently with a non-vanishing probability at even much lower densities. This fact appears to be related to a phase transition in the set of all solutions. The goal of this extended abstract is to provide a perspective on this phenomenon, and on the computational challenge that it poses.","PeriodicalId":88470,"journal":{"name":"Dialogues in cardiovascular medicine : DCM","volume":"5 1","pages":"32-37"},"PeriodicalIF":0.0000,"publicationDate":"2009-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Random Constraint Satisfaction Problems\",\"authors\":\"A. Coja-Oghlan\",\"doi\":\"10.4204/EPTCS.9.4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Random instances of constraint satisfaction problems such as k-SAT provide challenging benchmarks. If there are m constraints over n variables there is typically a large range of densities r=m/n where solutions are known to exist with probability close to one due to non-constructive arguments. However, no algorithms are known to find solutions efficiently with a non-vanishing probability at even much lower densities. This fact appears to be related to a phase transition in the set of all solutions. The goal of this extended abstract is to provide a perspective on this phenomenon, and on the computational challenge that it poses.\",\"PeriodicalId\":88470,\"journal\":{\"name\":\"Dialogues in cardiovascular medicine : DCM\",\"volume\":\"5 1\",\"pages\":\"32-37\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dialogues in cardiovascular medicine : DCM\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4204/EPTCS.9.4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dialogues in cardiovascular medicine : DCM","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4204/EPTCS.9.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Random instances of constraint satisfaction problems such as k-SAT provide challenging benchmarks. If there are m constraints over n variables there is typically a large range of densities r=m/n where solutions are known to exist with probability close to one due to non-constructive arguments. However, no algorithms are known to find solutions efficiently with a non-vanishing probability at even much lower densities. This fact appears to be related to a phase transition in the set of all solutions. The goal of this extended abstract is to provide a perspective on this phenomenon, and on the computational challenge that it poses.