{"title":"高效迭代逆转录介导的大肠杆菌体内重组","authors":"A. Ellington, Christopher R. Reisch","doi":"10.1093/synbio/ysac007","DOIUrl":null,"url":null,"abstract":"Abstract Recombineering is an important tool in gene editing, enabling fast, precise and highly specific in vivo modification of microbial genomes. Oligonucleotide-mediated recombineering via the in vivo production of single-stranded DNA can overcome the limitations of traditional recombineering methods that rely on the exogenous delivery of editing templates. By modifying a previously reported plasmid-based system for fully in vivo single-stranded DNA recombineering, we demonstrate iterative editing of independent loci by utilizing a temperature-sensitive origin of replication for easy curing of the editing plasmid from recombinant cells. Optimization of the promoters driving the expression of the system’s functional components, combined with targeted counterselection against unedited cells with Cas9 nuclease, enabled editing efficiencies of 90–100%. The addition of a dominant-negative mutL allele to the system allowed single-nucleotide edits that were otherwise unachievable due to mismatch repair. Finally, we tested alternative recombinases and found that efficiency significantly increased for some targets. Requiring only a single cloning step for retargeting, our system provides an easy-to-use method for rapid, efficient construction of desired mutants. Graphical Abstract","PeriodicalId":22158,"journal":{"name":"Synthetic Biology","volume":"23 1","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2022-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Efficient and iterative retron-mediated in vivo recombineering in Escherichia coli\",\"authors\":\"A. Ellington, Christopher R. Reisch\",\"doi\":\"10.1093/synbio/ysac007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Recombineering is an important tool in gene editing, enabling fast, precise and highly specific in vivo modification of microbial genomes. Oligonucleotide-mediated recombineering via the in vivo production of single-stranded DNA can overcome the limitations of traditional recombineering methods that rely on the exogenous delivery of editing templates. By modifying a previously reported plasmid-based system for fully in vivo single-stranded DNA recombineering, we demonstrate iterative editing of independent loci by utilizing a temperature-sensitive origin of replication for easy curing of the editing plasmid from recombinant cells. Optimization of the promoters driving the expression of the system’s functional components, combined with targeted counterselection against unedited cells with Cas9 nuclease, enabled editing efficiencies of 90–100%. The addition of a dominant-negative mutL allele to the system allowed single-nucleotide edits that were otherwise unachievable due to mismatch repair. Finally, we tested alternative recombinases and found that efficiency significantly increased for some targets. Requiring only a single cloning step for retargeting, our system provides an easy-to-use method for rapid, efficient construction of desired mutants. Graphical Abstract\",\"PeriodicalId\":22158,\"journal\":{\"name\":\"Synthetic Biology\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2022-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Synthetic Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/synbio/ysac007\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Synthetic Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/synbio/ysac007","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
Efficient and iterative retron-mediated in vivo recombineering in Escherichia coli
Abstract Recombineering is an important tool in gene editing, enabling fast, precise and highly specific in vivo modification of microbial genomes. Oligonucleotide-mediated recombineering via the in vivo production of single-stranded DNA can overcome the limitations of traditional recombineering methods that rely on the exogenous delivery of editing templates. By modifying a previously reported plasmid-based system for fully in vivo single-stranded DNA recombineering, we demonstrate iterative editing of independent loci by utilizing a temperature-sensitive origin of replication for easy curing of the editing plasmid from recombinant cells. Optimization of the promoters driving the expression of the system’s functional components, combined with targeted counterselection against unedited cells with Cas9 nuclease, enabled editing efficiencies of 90–100%. The addition of a dominant-negative mutL allele to the system allowed single-nucleotide edits that were otherwise unachievable due to mismatch repair. Finally, we tested alternative recombinases and found that efficiency significantly increased for some targets. Requiring only a single cloning step for retargeting, our system provides an easy-to-use method for rapid, efficient construction of desired mutants. Graphical Abstract