{"title":"DeepCuts:一个用于多种GPU工作负载的深度学习优化框架","authors":"Wookeun Jung, Thanh Tuan Dao, Jaejin Lee","doi":"10.1145/3453483.3454038","DOIUrl":null,"url":null,"abstract":"Widely used Deep Learning (DL) frameworks, such as TensorFlow, PyTorch, and MXNet, heavily rely on the NVIDIA cuDNN for performance. However, using cuDNN does not always give the best performance. One reason is that it is hard to handle every case of versatile DNN models and GPU architectures with a library that has a fixed implementation. Another reason is that cuDNN lacks kernel fusion functionality that gives a lot of chances to improve performance. In this paper, we propose a DL optimization framework for versatile GPU workloads, called DeepCuts. It considers both kernel implementation parameters and GPU architectures. It analyzes the DL workload, groups multiple DL operations into a single GPU kernel, and generates optimized GPU kernels considering kernel implementation parameters and GPU architecture parameters. The evaluation result with various DL workloads for inference and training indicates that DeepCuts outperforms cuDNN/cuBLAS-based implementations and the state-of-the-art DL optimization frameworks, such as TVM, TensorFlow XLA, and TensorRT.","PeriodicalId":20557,"journal":{"name":"Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design and Implementation","volume":"24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"DeepCuts: a deep learning optimization framework for versatile GPU workloads\",\"authors\":\"Wookeun Jung, Thanh Tuan Dao, Jaejin Lee\",\"doi\":\"10.1145/3453483.3454038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Widely used Deep Learning (DL) frameworks, such as TensorFlow, PyTorch, and MXNet, heavily rely on the NVIDIA cuDNN for performance. However, using cuDNN does not always give the best performance. One reason is that it is hard to handle every case of versatile DNN models and GPU architectures with a library that has a fixed implementation. Another reason is that cuDNN lacks kernel fusion functionality that gives a lot of chances to improve performance. In this paper, we propose a DL optimization framework for versatile GPU workloads, called DeepCuts. It considers both kernel implementation parameters and GPU architectures. It analyzes the DL workload, groups multiple DL operations into a single GPU kernel, and generates optimized GPU kernels considering kernel implementation parameters and GPU architecture parameters. The evaluation result with various DL workloads for inference and training indicates that DeepCuts outperforms cuDNN/cuBLAS-based implementations and the state-of-the-art DL optimization frameworks, such as TVM, TensorFlow XLA, and TensorRT.\",\"PeriodicalId\":20557,\"journal\":{\"name\":\"Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design and Implementation\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design and Implementation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3453483.3454038\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design and Implementation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3453483.3454038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
DeepCuts: a deep learning optimization framework for versatile GPU workloads
Widely used Deep Learning (DL) frameworks, such as TensorFlow, PyTorch, and MXNet, heavily rely on the NVIDIA cuDNN for performance. However, using cuDNN does not always give the best performance. One reason is that it is hard to handle every case of versatile DNN models and GPU architectures with a library that has a fixed implementation. Another reason is that cuDNN lacks kernel fusion functionality that gives a lot of chances to improve performance. In this paper, we propose a DL optimization framework for versatile GPU workloads, called DeepCuts. It considers both kernel implementation parameters and GPU architectures. It analyzes the DL workload, groups multiple DL operations into a single GPU kernel, and generates optimized GPU kernels considering kernel implementation parameters and GPU architecture parameters. The evaluation result with various DL workloads for inference and training indicates that DeepCuts outperforms cuDNN/cuBLAS-based implementations and the state-of-the-art DL optimization frameworks, such as TVM, TensorFlow XLA, and TensorRT.