基于多测地流核的无监督时间自适应高光谱图像分类

Tianzhu Liu, Yanfeng Gu
{"title":"基于多测地流核的无监督时间自适应高光谱图像分类","authors":"Tianzhu Liu, Yanfeng Gu","doi":"10.1109/IGARSS.2019.8898677","DOIUrl":null,"url":null,"abstract":"The miniaturization of hyperspectral sensors and the popularity of the unmanned aerial vehicle (UAV) make it possible to obtain a series of hyperspectral images (HSIs) in the same geographical area at different time-points by same or different sensors. When classifying these multi-temporal HSIs, temporal-adaptation is required to deal with the spectral drift and band inconsistency problems. Since most studies focus on semi-supervised domain adaptation (DA) strategy, and spatial features are usually absent during most of the DA procedure, an unsupervised temporal-adaptation method is realized by spatial-spectral multiple Geodesic Flow Kernels (S2-GFKs) to classify bi-temporal HSIs. Experiments conducted on two real HSI datasets and compared with several well-known methods demonstrate the availability of the proposed model.","PeriodicalId":13262,"journal":{"name":"IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium","volume":"46 1","pages":"10111-10114"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Unsupervised Temporal-Adaptation with Multiple Geodesic Flow Kernels for Hyperspectral Image Classification\",\"authors\":\"Tianzhu Liu, Yanfeng Gu\",\"doi\":\"10.1109/IGARSS.2019.8898677\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The miniaturization of hyperspectral sensors and the popularity of the unmanned aerial vehicle (UAV) make it possible to obtain a series of hyperspectral images (HSIs) in the same geographical area at different time-points by same or different sensors. When classifying these multi-temporal HSIs, temporal-adaptation is required to deal with the spectral drift and band inconsistency problems. Since most studies focus on semi-supervised domain adaptation (DA) strategy, and spatial features are usually absent during most of the DA procedure, an unsupervised temporal-adaptation method is realized by spatial-spectral multiple Geodesic Flow Kernels (S2-GFKs) to classify bi-temporal HSIs. Experiments conducted on two real HSI datasets and compared with several well-known methods demonstrate the availability of the proposed model.\",\"PeriodicalId\":13262,\"journal\":{\"name\":\"IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium\",\"volume\":\"46 1\",\"pages\":\"10111-10114\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IGARSS.2019.8898677\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS.2019.8898677","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

高光谱传感器的小型化和无人机的普及,使得利用相同或不同的传感器获取同一地理区域不同时间点的一系列高光谱图像成为可能。在对这些多时相hsi进行分类时,需要进行时间自适应,以解决光谱漂移和频带不一致问题。针对以往研究多集中在半监督域自适应(semi-supervised domain adaptation, DA)策略上,而大部分DA过程中往往缺少空间特征的问题,提出了一种基于空间-光谱多重测地流核(S2-GFKs)的无监督时间自适应方法来对双时相hsi进行分类。在两个真实的HSI数据集上进行了实验,并与几种已知的方法进行了比较,结果表明了该模型的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Unsupervised Temporal-Adaptation with Multiple Geodesic Flow Kernels for Hyperspectral Image Classification
The miniaturization of hyperspectral sensors and the popularity of the unmanned aerial vehicle (UAV) make it possible to obtain a series of hyperspectral images (HSIs) in the same geographical area at different time-points by same or different sensors. When classifying these multi-temporal HSIs, temporal-adaptation is required to deal with the spectral drift and band inconsistency problems. Since most studies focus on semi-supervised domain adaptation (DA) strategy, and spatial features are usually absent during most of the DA procedure, an unsupervised temporal-adaptation method is realized by spatial-spectral multiple Geodesic Flow Kernels (S2-GFKs) to classify bi-temporal HSIs. Experiments conducted on two real HSI datasets and compared with several well-known methods demonstrate the availability of the proposed model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Visual Question Answering From Remote Sensing Images The Impact of Additive Noise on Polarimetric Radarsat-2 Data Covering Oil Slicks Edge-Convolution Point Net for Semantic Segmentation of Large-Scale Point Clouds Burn Severity Estimation in Northern Australia Tropical Savannas Using Radiative Transfer Model and Sentinel-2 Data The Truth About Ground Truth: Label Noise in Human-Generated Reference Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1