{"title":"非声速渗流传导及Poole-Frenkel定律的数值模拟","authors":"Maria Patmiou, V. G. Karpov, G. Serpen, B. Weborg","doi":"10.1063/5.0019844","DOIUrl":null,"url":null,"abstract":"We present a numerical model that simulates the current-voltage (I-V) characteristics of materials that exhibit percolation conduction. The model consists of a two dimensional grid of exponentially different resistors in the presence of an external electric field. We obtained exponentially non-ohmic I-V characteristics validating earlier analytical predictions and consistent with multiple experimental observations of the Poole-Frenkel laws in non-crystalline materials. The exponents are linear in voltage for samples smaller than the correlation length of percolation cluster L, and square root in voltage for samples larger than L.","PeriodicalId":8438,"journal":{"name":"arXiv: Disordered Systems and Neural Networks","volume":"206 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Numerical modeling of nonohmic percolation conduction and Poole–Frenkel laws\",\"authors\":\"Maria Patmiou, V. G. Karpov, G. Serpen, B. Weborg\",\"doi\":\"10.1063/5.0019844\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a numerical model that simulates the current-voltage (I-V) characteristics of materials that exhibit percolation conduction. The model consists of a two dimensional grid of exponentially different resistors in the presence of an external electric field. We obtained exponentially non-ohmic I-V characteristics validating earlier analytical predictions and consistent with multiple experimental observations of the Poole-Frenkel laws in non-crystalline materials. The exponents are linear in voltage for samples smaller than the correlation length of percolation cluster L, and square root in voltage for samples larger than L.\",\"PeriodicalId\":8438,\"journal\":{\"name\":\"arXiv: Disordered Systems and Neural Networks\",\"volume\":\"206 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Disordered Systems and Neural Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0019844\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Disordered Systems and Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0019844","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Numerical modeling of nonohmic percolation conduction and Poole–Frenkel laws
We present a numerical model that simulates the current-voltage (I-V) characteristics of materials that exhibit percolation conduction. The model consists of a two dimensional grid of exponentially different resistors in the presence of an external electric field. We obtained exponentially non-ohmic I-V characteristics validating earlier analytical predictions and consistent with multiple experimental observations of the Poole-Frenkel laws in non-crystalline materials. The exponents are linear in voltage for samples smaller than the correlation length of percolation cluster L, and square root in voltage for samples larger than L.