迈向低成本rssi作物监测

IF 3.5 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS ACM Transactions on Internet of Things Pub Date : 2020-06-19 DOI:10.1145/3393667
Jan Bauer, N. Aschenbruck
{"title":"迈向低成本rssi作物监测","authors":"Jan Bauer, N. Aschenbruck","doi":"10.1145/3393667","DOIUrl":null,"url":null,"abstract":"The continuous monitoring of crop growth is crucial for site-specific and sustainable farm management in the context of precision agriculture. With the help of precise in situ information, agricultural practices, such as irrigation, fertilization, and plant protection, can be dynamically adapted to the changing needs of individual sites, thereby supporting yield increases and resource optimization. Nowadays, IoT technology with networked sensors deployed in greenhouses and farmlands already contributes to in situ information. In addition to existing soil sensors for moisture or nutrient monitoring, there are also (mainly optical) sensors to assess growth developments and vital conditions of crops. This article presents a novel and complementary approach for a low-cost crop sensing that is based on temporal variations of the signal strength of low-power IoT radio communication. To this end, the relationship between crop growth, represented by the leaf area index (LAI), and the attenuation of signal propagation of low-cost radio transceivers is investigated. Real-world experiments in wheat fields show a significant correlation between LAI and received signal strength indicator (RSSI) time series. Moreover, influencing meteorological factors are identified and their effects are analyzed. Including these factors, a multiple linear model is finally developed that enables an RSSI-based LAI estimation with great potential.","PeriodicalId":29764,"journal":{"name":"ACM Transactions on Internet of Things","volume":"43 1","pages":"1 - 26"},"PeriodicalIF":3.5000,"publicationDate":"2020-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Towards a Low-cost RSSI-based Crop Monitoring\",\"authors\":\"Jan Bauer, N. Aschenbruck\",\"doi\":\"10.1145/3393667\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The continuous monitoring of crop growth is crucial for site-specific and sustainable farm management in the context of precision agriculture. With the help of precise in situ information, agricultural practices, such as irrigation, fertilization, and plant protection, can be dynamically adapted to the changing needs of individual sites, thereby supporting yield increases and resource optimization. Nowadays, IoT technology with networked sensors deployed in greenhouses and farmlands already contributes to in situ information. In addition to existing soil sensors for moisture or nutrient monitoring, there are also (mainly optical) sensors to assess growth developments and vital conditions of crops. This article presents a novel and complementary approach for a low-cost crop sensing that is based on temporal variations of the signal strength of low-power IoT radio communication. To this end, the relationship between crop growth, represented by the leaf area index (LAI), and the attenuation of signal propagation of low-cost radio transceivers is investigated. Real-world experiments in wheat fields show a significant correlation between LAI and received signal strength indicator (RSSI) time series. Moreover, influencing meteorological factors are identified and their effects are analyzed. Including these factors, a multiple linear model is finally developed that enables an RSSI-based LAI estimation with great potential.\",\"PeriodicalId\":29764,\"journal\":{\"name\":\"ACM Transactions on Internet of Things\",\"volume\":\"43 1\",\"pages\":\"1 - 26\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2020-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Internet of Things\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3393667\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Internet of Things","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3393667","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 9

摘要

在精准农业的背景下,持续监测作物生长对特定地点和可持续的农场管理至关重要。在精确的现场信息的帮助下,农业实践,如灌溉、施肥和植物保护,可以动态地适应个别地点不断变化的需求,从而支持产量增加和资源优化。如今,部署在温室和农田中的联网传感器的物联网技术已经为现场信息做出了贡献。除了现有的用于水分或养分监测的土壤传感器外,还有(主要是光学)传感器用于评估作物的生长发育和生命条件。本文提出了一种基于低功耗物联网无线电通信信号强度时间变化的低成本作物传感的新颖互补方法。为此,研究了以叶面积指数(LAI)为代表的作物生长与低成本无线电收发器信号传播衰减的关系。小麦田间实测表明,LAI与接收信号强度指标(RSSI)时间序列之间存在显著的相关关系。并对影响气象因子进行了识别和分析。考虑到这些因素,最终建立了一个多元线性模型,使基于rssi的LAI估计具有很大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Towards a Low-cost RSSI-based Crop Monitoring
The continuous monitoring of crop growth is crucial for site-specific and sustainable farm management in the context of precision agriculture. With the help of precise in situ information, agricultural practices, such as irrigation, fertilization, and plant protection, can be dynamically adapted to the changing needs of individual sites, thereby supporting yield increases and resource optimization. Nowadays, IoT technology with networked sensors deployed in greenhouses and farmlands already contributes to in situ information. In addition to existing soil sensors for moisture or nutrient monitoring, there are also (mainly optical) sensors to assess growth developments and vital conditions of crops. This article presents a novel and complementary approach for a low-cost crop sensing that is based on temporal variations of the signal strength of low-power IoT radio communication. To this end, the relationship between crop growth, represented by the leaf area index (LAI), and the attenuation of signal propagation of low-cost radio transceivers is investigated. Real-world experiments in wheat fields show a significant correlation between LAI and received signal strength indicator (RSSI) time series. Moreover, influencing meteorological factors are identified and their effects are analyzed. Including these factors, a multiple linear model is finally developed that enables an RSSI-based LAI estimation with great potential.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.20
自引率
3.70%
发文量
0
期刊最新文献
Introduction to the Special Issue on Wireless Sensing for IoT Special Issue on Wireless Sensing for IoT: A Word from the Editor-in-Chief Resilient Intermediary‐Based Key Exchange Protocol for IoT A Two-Mode, Adaptive Security Framework for Smart Home Security Applications Online learning for dynamic impending collision prediction using FMCW radar
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1