{"title":"鬼屋:存在受损传感器的物理智能家居事件验证","authors":"S. Birnbach, Simon Eberz, I. Martinovic","doi":"10.1145/3506859","DOIUrl":null,"url":null,"abstract":"In this article, we verify physical events using data from an ensemble of smart home sensors. This approach both protects against event sensor faults and sophisticated attackers. To validate our system’s performance, we set up a “smart home” in an office environment. We recognize 22 event types using 48 sensors over the course of two weeks. Using data from the physical sensors, we verify the event stream supplied by the event sensors to detect both masking and spoofing attacks. We consider three threat models: a zero-effort attacker, an opportunistic attacker, and a sensor-compromise attacker who can arbitrarily modify live sensor data. For spoofed events, we achieve perfect classification for 9 out of 22 events and achieve a 0% false alarm rate at a detection rate exceeding 99.9% for 15 events. For 11 events the majority of masking attacks can be detected without causing any false alarms. We also show that even a strong opportunistic attacker is inherently limited to spoofing few select events and that doing so involves lengthy waiting periods. Finally, we demonstrate the vulnerability of a single-classifier system to compromised sensor data and introduce a more secure approach based on sensor fusion.","PeriodicalId":29764,"journal":{"name":"ACM Transactions on Internet of Things","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2022-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Haunted House: Physical Smart Home Event Verification in the Presence of Compromised Sensors\",\"authors\":\"S. Birnbach, Simon Eberz, I. Martinovic\",\"doi\":\"10.1145/3506859\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we verify physical events using data from an ensemble of smart home sensors. This approach both protects against event sensor faults and sophisticated attackers. To validate our system’s performance, we set up a “smart home” in an office environment. We recognize 22 event types using 48 sensors over the course of two weeks. Using data from the physical sensors, we verify the event stream supplied by the event sensors to detect both masking and spoofing attacks. We consider three threat models: a zero-effort attacker, an opportunistic attacker, and a sensor-compromise attacker who can arbitrarily modify live sensor data. For spoofed events, we achieve perfect classification for 9 out of 22 events and achieve a 0% false alarm rate at a detection rate exceeding 99.9% for 15 events. For 11 events the majority of masking attacks can be detected without causing any false alarms. We also show that even a strong opportunistic attacker is inherently limited to spoofing few select events and that doing so involves lengthy waiting periods. Finally, we demonstrate the vulnerability of a single-classifier system to compromised sensor data and introduce a more secure approach based on sensor fusion.\",\"PeriodicalId\":29764,\"journal\":{\"name\":\"ACM Transactions on Internet of Things\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2022-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Internet of Things\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3506859\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Internet of Things","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3506859","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Haunted House: Physical Smart Home Event Verification in the Presence of Compromised Sensors
In this article, we verify physical events using data from an ensemble of smart home sensors. This approach both protects against event sensor faults and sophisticated attackers. To validate our system’s performance, we set up a “smart home” in an office environment. We recognize 22 event types using 48 sensors over the course of two weeks. Using data from the physical sensors, we verify the event stream supplied by the event sensors to detect both masking and spoofing attacks. We consider three threat models: a zero-effort attacker, an opportunistic attacker, and a sensor-compromise attacker who can arbitrarily modify live sensor data. For spoofed events, we achieve perfect classification for 9 out of 22 events and achieve a 0% false alarm rate at a detection rate exceeding 99.9% for 15 events. For 11 events the majority of masking attacks can be detected without causing any false alarms. We also show that even a strong opportunistic attacker is inherently limited to spoofing few select events and that doing so involves lengthy waiting periods. Finally, we demonstrate the vulnerability of a single-classifier system to compromised sensor data and introduce a more secure approach based on sensor fusion.