了解烧结银模粘结失效机理的九点弯曲测试技术

IF 1.5 4区 工程技术 Q3 ENGINEERING, MECHANICAL Experimental Techniques Pub Date : 2023-07-19 DOI:10.1007/s40799-023-00664-y
K. Wakamoto, K. Fuji, T. Otsuka, K. Nakahara, T. Namazu
{"title":"了解烧结银模粘结失效机理的九点弯曲测试技术","authors":"K. Wakamoto,&nbsp;K. Fuji,&nbsp;T. Otsuka,&nbsp;K. Nakahara,&nbsp;T. Namazu","doi":"10.1007/s40799-023-00664-y","DOIUrl":null,"url":null,"abstract":"<p>The Sintered silver (s–Ag) die degradation is commonly evaluated by thermal shocked test (TST), which evaluates the material’s durability against a heating/cooling cycle. Materials with different coefficient of thermal expansion (CTE) give rise to thermal out-of-plane deformation surrounding the bonding part, which deteriorates s–Ag die part by repeated thermal and mechanical stress during TST. For the safe and reliable design of s–Ag die toward long-term durability, the contribution of thermal and mechanical stresses to degradation should be understood separately. Clarify the overall s–Ag die degradation mechanism during TST compared to the new mechanical bending test that can apply out-of-plane deformation. The authors propose a new mechanical bending test technique, called the nine-point bending (NBT) test, which can provide out-of-plane deformation with a s–Ag die-attached specimen as TST like. By comparing NBT and TST, the degradation mechanism of the s–Ag die-attach element can be understood from both thermal and mechanical aspects. In scanning acoustic tomography (SAT) analysis, a similar degradation ratio between NBT and TST is obtained, which indicates that mechanical stress plays a significant role in deteriorating s–Ag die layer in TST. After 1000 cycles, however, cracking and s–Ag material aging coexist in TST only, destabilizing s–Ag die fracture. s–Ag main degradation cause in TST is clarified with mechanical stress by comparing NBT. In addition, thermally material aging destabilized the s–Ag degradation during TST.</p>","PeriodicalId":553,"journal":{"name":"Experimental Techniques","volume":"48 3","pages":"399 - 408"},"PeriodicalIF":1.5000,"publicationDate":"2023-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40799-023-00664-y.pdf","citationCount":"0","resultStr":"{\"title\":\"Nine Point Bending Test Technique for Understanding of Sintered Silver Die Bonding Failure Mechanism\",\"authors\":\"K. Wakamoto,&nbsp;K. Fuji,&nbsp;T. Otsuka,&nbsp;K. Nakahara,&nbsp;T. Namazu\",\"doi\":\"10.1007/s40799-023-00664-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The Sintered silver (s–Ag) die degradation is commonly evaluated by thermal shocked test (TST), which evaluates the material’s durability against a heating/cooling cycle. Materials with different coefficient of thermal expansion (CTE) give rise to thermal out-of-plane deformation surrounding the bonding part, which deteriorates s–Ag die part by repeated thermal and mechanical stress during TST. For the safe and reliable design of s–Ag die toward long-term durability, the contribution of thermal and mechanical stresses to degradation should be understood separately. Clarify the overall s–Ag die degradation mechanism during TST compared to the new mechanical bending test that can apply out-of-plane deformation. The authors propose a new mechanical bending test technique, called the nine-point bending (NBT) test, which can provide out-of-plane deformation with a s–Ag die-attached specimen as TST like. By comparing NBT and TST, the degradation mechanism of the s–Ag die-attach element can be understood from both thermal and mechanical aspects. In scanning acoustic tomography (SAT) analysis, a similar degradation ratio between NBT and TST is obtained, which indicates that mechanical stress plays a significant role in deteriorating s–Ag die layer in TST. After 1000 cycles, however, cracking and s–Ag material aging coexist in TST only, destabilizing s–Ag die fracture. s–Ag main degradation cause in TST is clarified with mechanical stress by comparing NBT. In addition, thermally material aging destabilized the s–Ag degradation during TST.</p>\",\"PeriodicalId\":553,\"journal\":{\"name\":\"Experimental Techniques\",\"volume\":\"48 3\",\"pages\":\"399 - 408\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s40799-023-00664-y.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental Techniques\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40799-023-00664-y\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Techniques","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s40799-023-00664-y","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

烧结银(s-Ag)模具降解通常通过热冲击试验(TST)进行评估,该试验评估材料在加热/冷却循环中的耐久性。具有不同热膨胀系数(CTE)的材料会导致接合部分周围产生热平面外变形,从而在 TST 期间通过反复的热应力和机械应力使 s-Ag 模具部分劣化。为了安全可靠地设计出具有长期耐久性的 s-Ag 模具,应分别了解热应力和机械应力对降解的影响。与可施加平面外变形的新型机械弯曲试验相比,澄清了 TST 期间 s-Ag 模具的整体降解机制。作者提出了一种新的机械弯曲测试技术,称为九点弯曲(NBT)测试,它能像 TST 一样使连接 s-Ag 模具的试样产生平面外变形。通过比较 NBT 和 TST,可以从热和机械两个方面了解 s-Ag 压铸件连接元件的降解机制。在扫描声断层扫描(SAT)分析中,NBT 和 TST 得到了相似的降解率,这表明在 TST 中,机械应力在 s-Ag 晶粒层的劣化中起了重要作用。但在 1000 次循环后,只有 TST 中开裂和 s-Ag 材料老化同时存在,从而破坏了 s-Ag 晶粒断裂的稳定性。此外,热材料老化破坏了 TST 期间 s-Ag 降解的稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Nine Point Bending Test Technique for Understanding of Sintered Silver Die Bonding Failure Mechanism

The Sintered silver (s–Ag) die degradation is commonly evaluated by thermal shocked test (TST), which evaluates the material’s durability against a heating/cooling cycle. Materials with different coefficient of thermal expansion (CTE) give rise to thermal out-of-plane deformation surrounding the bonding part, which deteriorates s–Ag die part by repeated thermal and mechanical stress during TST. For the safe and reliable design of s–Ag die toward long-term durability, the contribution of thermal and mechanical stresses to degradation should be understood separately. Clarify the overall s–Ag die degradation mechanism during TST compared to the new mechanical bending test that can apply out-of-plane deformation. The authors propose a new mechanical bending test technique, called the nine-point bending (NBT) test, which can provide out-of-plane deformation with a s–Ag die-attached specimen as TST like. By comparing NBT and TST, the degradation mechanism of the s–Ag die-attach element can be understood from both thermal and mechanical aspects. In scanning acoustic tomography (SAT) analysis, a similar degradation ratio between NBT and TST is obtained, which indicates that mechanical stress plays a significant role in deteriorating s–Ag die layer in TST. After 1000 cycles, however, cracking and s–Ag material aging coexist in TST only, destabilizing s–Ag die fracture. s–Ag main degradation cause in TST is clarified with mechanical stress by comparing NBT. In addition, thermally material aging destabilized the s–Ag degradation during TST.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Experimental Techniques
Experimental Techniques 工程技术-材料科学:表征与测试
CiteScore
3.50
自引率
6.20%
发文量
88
审稿时长
5.2 months
期刊介绍: Experimental Techniques is a bimonthly interdisciplinary publication of the Society for Experimental Mechanics focusing on the development, application and tutorial of experimental mechanics techniques. The purpose for Experimental Techniques is to promote pedagogical, technical and practical advancements in experimental mechanics while supporting the Society''s mission and commitment to interdisciplinary application, research and development, education, and active promotion of experimental methods to: - Increase the knowledge of physical phenomena - Further the understanding of the behavior of materials, structures, and systems - Provide the necessary physical observations necessary to improve and assess new analytical and computational approaches.
期刊最新文献
On the Cover: Identification of Lightning Strike Damage Severity Using Pulse Thermography Through Integration of Thermal Data A Note of Gratitude from the Editor-in-Chief On the Cover: Study on Velocity Distribution on Cross-Section Flow of T-Shunt Reconstruction of Unsteady Lift Force Measurements Using Non-Dimensional Scaling Optimization Surface Microstructure Evolution and Mechanical Property Investigation of Inconel 718 Alloy Using Multiple Trimmings and WEDM
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1