网络聚类e-质量函数的若干性质

Q3 Decision Sciences Yugoslav Journal of Operations Research Pub Date : 2021-01-01 DOI:10.2298/yjor191215031d
Dušan Džamić
{"title":"网络聚类e-质量函数的若干性质","authors":"Dušan Džamić","doi":"10.2298/yjor191215031d","DOIUrl":null,"url":null,"abstract":"One of the most important properties of graphs that represents real complex systems is community structure, or clustering, i.e., organizing vertices in cohesive groups with high concentration of edges within individual groups and low concentration of edges between vertices in different groups. In this paper, we analyze Exponential Quality function for network clustering. We consider different classes of artificial networks from literature and analyze whether the maximization of Exponential Quality function tends to merge or split clusters in optimal partition even if they are unambiguously defined. Our theoretical results show that Exponential Quality function detects the expected and reasonable clusters in all classes of instances and the Modularity function does not.","PeriodicalId":52438,"journal":{"name":"Yugoslav Journal of Operations Research","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Some properties of e-quality function for network clustering\",\"authors\":\"Dušan Džamić\",\"doi\":\"10.2298/yjor191215031d\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the most important properties of graphs that represents real complex systems is community structure, or clustering, i.e., organizing vertices in cohesive groups with high concentration of edges within individual groups and low concentration of edges between vertices in different groups. In this paper, we analyze Exponential Quality function for network clustering. We consider different classes of artificial networks from literature and analyze whether the maximization of Exponential Quality function tends to merge or split clusters in optimal partition even if they are unambiguously defined. Our theoretical results show that Exponential Quality function detects the expected and reasonable clusters in all classes of instances and the Modularity function does not.\",\"PeriodicalId\":52438,\"journal\":{\"name\":\"Yugoslav Journal of Operations Research\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Yugoslav Journal of Operations Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2298/yjor191215031d\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Decision Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Yugoslav Journal of Operations Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2298/yjor191215031d","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Decision Sciences","Score":null,"Total":0}
引用次数: 0

摘要

表示真正复杂系统的图的最重要的性质之一是群落结构,或聚类,即在单个组内具有高浓度边和不同组中顶点之间低浓度边的内聚群中组织顶点。本文分析了网络聚类的指数质量函数。我们考虑了文献中不同类别的人工网络,并分析了指数质量函数的最大化是否倾向于在最优划分中合并或分裂聚类,即使它们是明确定义的。我们的理论结果表明,指数质量函数在所有类别的实例中都能检测到期望的和合理的聚类,而模块化函数则不能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Some properties of e-quality function for network clustering
One of the most important properties of graphs that represents real complex systems is community structure, or clustering, i.e., organizing vertices in cohesive groups with high concentration of edges within individual groups and low concentration of edges between vertices in different groups. In this paper, we analyze Exponential Quality function for network clustering. We consider different classes of artificial networks from literature and analyze whether the maximization of Exponential Quality function tends to merge or split clusters in optimal partition even if they are unambiguously defined. Our theoretical results show that Exponential Quality function detects the expected and reasonable clusters in all classes of instances and the Modularity function does not.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Yugoslav Journal of Operations Research
Yugoslav Journal of Operations Research Decision Sciences-Management Science and Operations Research
CiteScore
2.50
自引率
0.00%
发文量
14
审稿时长
24 weeks
期刊最新文献
Metric on the space of systems behavior functions represented by fuzzy measures Team-bounded DEA efficiency scores: The case of UEFA Champions League Players Bounds on eigenvalues of real symmetric interval matrices for αBB method in global optimization A managerial approach in resource allocation models: an application in us and Canadian oil and gas companies Neutrosophic MAGDM based on critic-EDAS strategy using geometric aggregation operator
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1