热塑性复合材料自动铺放纤维的热传递分析

IF 1.8 Q3 ENGINEERING, MANUFACTURING Advanced Manufacturing: Polymer & Composites Science Pub Date : 2019-10-02 DOI:10.1080/20550340.2019.1686820
O. A. Tafreshi, S. Hoa, F. Shadmehri, D. Hoang, D. Rosca
{"title":"热塑性复合材料自动铺放纤维的热传递分析","authors":"O. A. Tafreshi, S. Hoa, F. Shadmehri, D. Hoang, D. Rosca","doi":"10.1080/20550340.2019.1686820","DOIUrl":null,"url":null,"abstract":"Abstract With more and more use of composites in engineering applications, the need for automated composites manufacturing is evident. The use of automated fiber placement (AFP) machine for the manufacturing of thermoplastic composites is under rapid development. In this technique, a moving heat source (hot gas torch, laser, or heat lamp) is melting the thermoplastic composite tape and consolidation occurs in situ. Due to the rapid heating and cooling of the material, there are many issues to be addressed. First is the development of the temperature distribution in different directions which gives rise to temperature gradients. Second is the quality of the bond between different layers, and third is the rate of material deposition to satisfy industrial demand. This paper addresses the first issue. The temperature distribution affects the variation in crystallinity, and residual stresses throughout the structure as it is being built. The result is the distortion of the composite laminate even during the process. In order to address this problem, first the temperature distribution due to a moving heat source needs to be determined. From the temperature distribution, the development and distribution of crystallinity, residual stresses and deformation of the structure can then be determined. As the first phase of the work, this paper investigates the temperature distribution due to a moving heat source for thermoplastic composites, without considering the material deposition. A finite difference (FD) code based on energy balance approach is developed to predict the temperature distribution during the process. Unidirectional composite strips are manufactured using AFP and fast-response K-type thermocouples (response time of 0.08 s, as compared to normal thermocouples with response time of 0.5 s) are used to determine the thermal profiles in various locations through the thickness of the composite laminate subjected to a moving heat source. It is shown that temperature variations measured experimentally during the heating pass, using thermocouples embedded into the composite substrate, underneath layers of the composite material, are consistent with the generated thermal profiles from the numerical model. The temperature distribution, in both the direction of the tape and through-thickness direction can be predicted numerically.","PeriodicalId":7243,"journal":{"name":"Advanced Manufacturing: Polymer & Composites Science","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2019-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Heat transfer analysis of automated fiber placement of thermoplastic composites using a hot gas torch\",\"authors\":\"O. A. Tafreshi, S. Hoa, F. Shadmehri, D. Hoang, D. Rosca\",\"doi\":\"10.1080/20550340.2019.1686820\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract With more and more use of composites in engineering applications, the need for automated composites manufacturing is evident. The use of automated fiber placement (AFP) machine for the manufacturing of thermoplastic composites is under rapid development. In this technique, a moving heat source (hot gas torch, laser, or heat lamp) is melting the thermoplastic composite tape and consolidation occurs in situ. Due to the rapid heating and cooling of the material, there are many issues to be addressed. First is the development of the temperature distribution in different directions which gives rise to temperature gradients. Second is the quality of the bond between different layers, and third is the rate of material deposition to satisfy industrial demand. This paper addresses the first issue. The temperature distribution affects the variation in crystallinity, and residual stresses throughout the structure as it is being built. The result is the distortion of the composite laminate even during the process. In order to address this problem, first the temperature distribution due to a moving heat source needs to be determined. From the temperature distribution, the development and distribution of crystallinity, residual stresses and deformation of the structure can then be determined. As the first phase of the work, this paper investigates the temperature distribution due to a moving heat source for thermoplastic composites, without considering the material deposition. A finite difference (FD) code based on energy balance approach is developed to predict the temperature distribution during the process. Unidirectional composite strips are manufactured using AFP and fast-response K-type thermocouples (response time of 0.08 s, as compared to normal thermocouples with response time of 0.5 s) are used to determine the thermal profiles in various locations through the thickness of the composite laminate subjected to a moving heat source. It is shown that temperature variations measured experimentally during the heating pass, using thermocouples embedded into the composite substrate, underneath layers of the composite material, are consistent with the generated thermal profiles from the numerical model. The temperature distribution, in both the direction of the tape and through-thickness direction can be predicted numerically.\",\"PeriodicalId\":7243,\"journal\":{\"name\":\"Advanced Manufacturing: Polymer & Composites Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2019-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Manufacturing: Polymer & Composites Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/20550340.2019.1686820\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Manufacturing: Polymer & Composites Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/20550340.2019.1686820","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 18

摘要

随着复合材料在工程应用中的应用越来越多,对复合材料自动化制造的需求也越来越明显。利用自动铺布机制造热塑性复合材料正处于快速发展的阶段。在这种技术中,移动热源(热气体火炬、激光或热灯)正在熔化热塑性复合胶带,并在原位发生固结。由于材料的快速加热和冷却,有许多问题需要解决。首先是温度分布在不同方向上的发展,这就产生了温度梯度。其次是不同层之间的粘合质量,第三是材料沉积的速度,以满足工业需求。本文解决了第一个问题。温度分布影响结晶度的变化,以及在构建过程中整个结构的残余应力。其结果是复合材料层压板即使在加工过程中也会发生变形。为了解决这个问题,首先需要确定由移动热源引起的温度分布。根据温度分布,可以确定结构的结晶度、残余应力和变形的发展和分布。作为工作的第一阶段,本文在不考虑材料沉积的情况下,研究了热塑性复合材料在移动热源下的温度分布。提出了一种基于能量平衡法的有限差分(FD)程序来预测过程中的温度分布。单向复合材料带材使用AFP和快速响应的k型热电偶(响应时间为0.08 s,与响应时间为0.5 s的普通热电偶相比)制造,用于通过复合材料层压板的厚度在移动热源下确定不同位置的热分布。结果表明,利用热电偶嵌入复合材料衬底,在复合材料的底层加热过程中,实验测量的温度变化与数值模型生成的热分布一致。温度分布,在带的方向和通过厚度方向都可以被数值预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Heat transfer analysis of automated fiber placement of thermoplastic composites using a hot gas torch
Abstract With more and more use of composites in engineering applications, the need for automated composites manufacturing is evident. The use of automated fiber placement (AFP) machine for the manufacturing of thermoplastic composites is under rapid development. In this technique, a moving heat source (hot gas torch, laser, or heat lamp) is melting the thermoplastic composite tape and consolidation occurs in situ. Due to the rapid heating and cooling of the material, there are many issues to be addressed. First is the development of the temperature distribution in different directions which gives rise to temperature gradients. Second is the quality of the bond between different layers, and third is the rate of material deposition to satisfy industrial demand. This paper addresses the first issue. The temperature distribution affects the variation in crystallinity, and residual stresses throughout the structure as it is being built. The result is the distortion of the composite laminate even during the process. In order to address this problem, first the temperature distribution due to a moving heat source needs to be determined. From the temperature distribution, the development and distribution of crystallinity, residual stresses and deformation of the structure can then be determined. As the first phase of the work, this paper investigates the temperature distribution due to a moving heat source for thermoplastic composites, without considering the material deposition. A finite difference (FD) code based on energy balance approach is developed to predict the temperature distribution during the process. Unidirectional composite strips are manufactured using AFP and fast-response K-type thermocouples (response time of 0.08 s, as compared to normal thermocouples with response time of 0.5 s) are used to determine the thermal profiles in various locations through the thickness of the composite laminate subjected to a moving heat source. It is shown that temperature variations measured experimentally during the heating pass, using thermocouples embedded into the composite substrate, underneath layers of the composite material, are consistent with the generated thermal profiles from the numerical model. The temperature distribution, in both the direction of the tape and through-thickness direction can be predicted numerically.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.00
自引率
0.00%
发文量
11
审稿时长
16 weeks
期刊最新文献
Mitigating void growth in out-of-autoclave prepreg processing using a semi-permeable membrane to maintain resin pressure Analysis and development of a brazing method to weld carbon fiber-reinforced poly ether ketone ketone with amorphous PEKK In-situ analysis of cocured scarf patch repairs Bending properties of structural foams manufactured in a hot press process Experimental validation of co-cure process of honeycomb sandwich structures simulation: adhesive fillet shape and bond-line porosity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1