用于树大小估计的量子算法,应用于回溯和2人游戏

A. Ambainis, M. Kokainis
{"title":"用于树大小估计的量子算法,应用于回溯和2人游戏","authors":"A. Ambainis, M. Kokainis","doi":"10.1145/3055399.3055444","DOIUrl":null,"url":null,"abstract":"We study quantum algorithms on search trees of unknown structure, in a model where the tree can be discovered by local exploration. That is, we are given the root of the tree and access to a black box which, given a vertex v, outputs the children of v. We construct a quantum algorithm which, given such access to a search tree of depth at most n, estimates the size of the tree T within a factor of 1± δ in Õ(√nT) steps. More generally, the same algorithm can be used to estimate size of directed acyclic graphs (DAGs) in a similar model. We then show two applications of this result: a) We show how to transform a classical backtracking search algorithm which examines T nodes of a search tree into an Õ(√Tn3/2) time quantum algorithm, improving over an earlier quantum backtracking algorithm of Montanaro (arXiv:1509.02374). b)We give a quantum algorithm for evaluating AND-OR formulas in a model where the formula can be discovered by local exploration (modeling position trees in 2-player games) which evaluates formulas of size T and depth To(1) in time O(T1/2+o(1)). Thus, the quantum speedup is essentially the same as in the case when the formula is known in advance.","PeriodicalId":20615,"journal":{"name":"Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":"{\"title\":\"Quantum algorithm for tree size estimation, with applications to backtracking and 2-player games\",\"authors\":\"A. Ambainis, M. Kokainis\",\"doi\":\"10.1145/3055399.3055444\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study quantum algorithms on search trees of unknown structure, in a model where the tree can be discovered by local exploration. That is, we are given the root of the tree and access to a black box which, given a vertex v, outputs the children of v. We construct a quantum algorithm which, given such access to a search tree of depth at most n, estimates the size of the tree T within a factor of 1± δ in Õ(√nT) steps. More generally, the same algorithm can be used to estimate size of directed acyclic graphs (DAGs) in a similar model. We then show two applications of this result: a) We show how to transform a classical backtracking search algorithm which examines T nodes of a search tree into an Õ(√Tn3/2) time quantum algorithm, improving over an earlier quantum backtracking algorithm of Montanaro (arXiv:1509.02374). b)We give a quantum algorithm for evaluating AND-OR formulas in a model where the formula can be discovered by local exploration (modeling position trees in 2-player games) which evaluates formulas of size T and depth To(1) in time O(T1/2+o(1)). Thus, the quantum speedup is essentially the same as in the case when the formula is known in advance.\",\"PeriodicalId\":20615,\"journal\":{\"name\":\"Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"31\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3055399.3055444\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3055399.3055444","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

摘要

我们研究了未知结构的搜索树上的量子算法,在一个可以通过局部探索发现树的模型中。也就是说,我们给定树的根,并访问一个黑盒,该黑盒给定顶点v,输出v的子节点。我们构造了一个量子算法,给定对深度最多为n的搜索树的访问,该算法在Õ(√nT)步长中以1±δ为因子估计树T的大小。更一般地说,在类似的模型中,同样的算法可以用来估计有向无环图(dag)的大小。然后,我们展示了该结果的两个应用:a)我们展示了如何将检查搜索树的T个节点的经典回溯搜索算法转换为Õ(√Tn3/2)时间量子算法,改进了Montanaro (arXiv:1509.02374)的早期量子回溯算法。b)我们给出了一种量子算法,用于评估模型中的and - or公式,其中公式可以通过局部探索(在2人博弈中建模位置树)发现,该模型在时间O(T1/2+ O(1))中评估大小为T、深度为To(1)的公式。因此,量子加速本质上与公式事先已知的情况相同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Quantum algorithm for tree size estimation, with applications to backtracking and 2-player games
We study quantum algorithms on search trees of unknown structure, in a model where the tree can be discovered by local exploration. That is, we are given the root of the tree and access to a black box which, given a vertex v, outputs the children of v. We construct a quantum algorithm which, given such access to a search tree of depth at most n, estimates the size of the tree T within a factor of 1± δ in Õ(√nT) steps. More generally, the same algorithm can be used to estimate size of directed acyclic graphs (DAGs) in a similar model. We then show two applications of this result: a) We show how to transform a classical backtracking search algorithm which examines T nodes of a search tree into an Õ(√Tn3/2) time quantum algorithm, improving over an earlier quantum backtracking algorithm of Montanaro (arXiv:1509.02374). b)We give a quantum algorithm for evaluating AND-OR formulas in a model where the formula can be discovered by local exploration (modeling position trees in 2-player games) which evaluates formulas of size T and depth To(1) in time O(T1/2+o(1)). Thus, the quantum speedup is essentially the same as in the case when the formula is known in advance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Online service with delay A simpler and faster strongly polynomial algorithm for generalized flow maximization Low rank approximation with entrywise l1-norm error Fast convergence of learning in games (invited talk) Surviving in directed graphs: a quasi-polynomial-time polylogarithmic approximation for two-connected directed Steiner tree
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1