用深度学习模拟风场对复杂地形的适应

L. Le Toumelin, I. Gouttevin, N. Helbig, C. Galiez, Mathis Roux, F. Karbou
{"title":"用深度学习模拟风场对复杂地形的适应","authors":"L. Le Toumelin, I. Gouttevin, N. Helbig, C. Galiez, Mathis Roux, F. Karbou","doi":"10.1175/aies-d-22-0034.1","DOIUrl":null,"url":null,"abstract":"\nEstimating the impact of wind-driven snow transport requires modeling wind fields with a lower grid spacing than the spacing on the order of one or a few kilometers used in the current numerical weather prediction (NWP) systems. In this context, we introduce a new strategy to downscale wind fields from NWP systems to decametric scales, using high resolution (30m) topographic information. Our method (named DEVINE) leverage on a convolutional neural network (CNN), trained to replicate the behaviour of the complex atmospheric model ARPS, previously run on a large number (7279) of synthetic Gaussian topographies under controlled weather conditions. A 10-fold cross validation reveals that our CNN is able to accurately emulate the behavior of ARPS (mean absolute error for wind speed = 0.16 m/s). We then apply DEVINE to real cases in the Alps, i.e. downscaling wind fields forecasted by AROME NWP system using information from real alpine topographies. DEVINE proved able to reproduce main features of wind fields in complex terrain (acceleration on ridges, leeward deceleration, deviations around obstacles). Furthermore, an evaluation on quality checked observations acquired at 61 sites in the French Alps reveals an improved behaviour of the downscaled winds (AROME wind speed mean bias is reduced by 27% with DEVINE), especially at the most elevated and exposed stations. Wind direction is however only slightly modified. Hence, despite some current limitations inherited from the ARPS simulations setup, DEVINE appears as an efficient downscaling tool whose minimalist architecture, low input data requirements (NWP wind fields and high-resolution topography) and competitive computing times may be attractive for operational applications.","PeriodicalId":94369,"journal":{"name":"Artificial intelligence for the earth systems","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Emulating the adaptation of wind fields to complex terrain with deep-learning\",\"authors\":\"L. Le Toumelin, I. Gouttevin, N. Helbig, C. Galiez, Mathis Roux, F. Karbou\",\"doi\":\"10.1175/aies-d-22-0034.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nEstimating the impact of wind-driven snow transport requires modeling wind fields with a lower grid spacing than the spacing on the order of one or a few kilometers used in the current numerical weather prediction (NWP) systems. In this context, we introduce a new strategy to downscale wind fields from NWP systems to decametric scales, using high resolution (30m) topographic information. Our method (named DEVINE) leverage on a convolutional neural network (CNN), trained to replicate the behaviour of the complex atmospheric model ARPS, previously run on a large number (7279) of synthetic Gaussian topographies under controlled weather conditions. A 10-fold cross validation reveals that our CNN is able to accurately emulate the behavior of ARPS (mean absolute error for wind speed = 0.16 m/s). We then apply DEVINE to real cases in the Alps, i.e. downscaling wind fields forecasted by AROME NWP system using information from real alpine topographies. DEVINE proved able to reproduce main features of wind fields in complex terrain (acceleration on ridges, leeward deceleration, deviations around obstacles). Furthermore, an evaluation on quality checked observations acquired at 61 sites in the French Alps reveals an improved behaviour of the downscaled winds (AROME wind speed mean bias is reduced by 27% with DEVINE), especially at the most elevated and exposed stations. Wind direction is however only slightly modified. Hence, despite some current limitations inherited from the ARPS simulations setup, DEVINE appears as an efficient downscaling tool whose minimalist architecture, low input data requirements (NWP wind fields and high-resolution topography) and competitive computing times may be attractive for operational applications.\",\"PeriodicalId\":94369,\"journal\":{\"name\":\"Artificial intelligence for the earth systems\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial intelligence for the earth systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1175/aies-d-22-0034.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial intelligence for the earth systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1175/aies-d-22-0034.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

估计风驱动雪运输的影响需要用比当前数值天气预报(NWP)系统中使用的一公里或几公里的间距更小的网格间距来模拟风场。在这种情况下,我们引入了一种新的策略,利用高分辨率(30米)的地形信息,将NWP系统的风场缩小到10米尺度。我们的方法(名为DEVINE)利用卷积神经网络(CNN),训练来复制复杂大气模型ARPS的行为,之前在控制天气条件下在大量(7279)合成高斯地形上运行。10倍交叉验证表明,我们的CNN能够准确地模拟ARPS的行为(风速的平均绝对误差= 0.16 m/s)。然后,我们将DEVINE应用于阿尔卑斯山脉的实际情况,即AROME NWP系统利用真实阿尔卑斯地形信息预测的风场降尺度。事实证明,DEVINE能够重现复杂地形中风场的主要特征(山脊上的加速、背风减速、障碍物周围的偏差)。此外,对法国阿尔卑斯山61个站点获得的质量检查观测结果的评估显示,低尺度风的行为有所改善(AROME风速平均偏差与DEVINE一起减少了27%),特别是在最高和暴露的站点。然而,风向只有轻微的改变。因此,尽管目前从ARPS模拟设置中继承了一些限制,DEVINE作为一种高效的缩小工具,其极简的架构,低输入数据要求(NWP风场和高分辨率地形)和具有竞争力的计算时间可能对运营应用具有吸引力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Emulating the adaptation of wind fields to complex terrain with deep-learning
Estimating the impact of wind-driven snow transport requires modeling wind fields with a lower grid spacing than the spacing on the order of one or a few kilometers used in the current numerical weather prediction (NWP) systems. In this context, we introduce a new strategy to downscale wind fields from NWP systems to decametric scales, using high resolution (30m) topographic information. Our method (named DEVINE) leverage on a convolutional neural network (CNN), trained to replicate the behaviour of the complex atmospheric model ARPS, previously run on a large number (7279) of synthetic Gaussian topographies under controlled weather conditions. A 10-fold cross validation reveals that our CNN is able to accurately emulate the behavior of ARPS (mean absolute error for wind speed = 0.16 m/s). We then apply DEVINE to real cases in the Alps, i.e. downscaling wind fields forecasted by AROME NWP system using information from real alpine topographies. DEVINE proved able to reproduce main features of wind fields in complex terrain (acceleration on ridges, leeward deceleration, deviations around obstacles). Furthermore, an evaluation on quality checked observations acquired at 61 sites in the French Alps reveals an improved behaviour of the downscaled winds (AROME wind speed mean bias is reduced by 27% with DEVINE), especially at the most elevated and exposed stations. Wind direction is however only slightly modified. Hence, despite some current limitations inherited from the ARPS simulations setup, DEVINE appears as an efficient downscaling tool whose minimalist architecture, low input data requirements (NWP wind fields and high-resolution topography) and competitive computing times may be attractive for operational applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Transferability and explainability of deep learning emulators for regional climate model projections: Perspectives for future applications Classification of ice particle shapes using machine learning on forward light scattering images Convolutional encoding and normalizing flows: a deep learning approach for offshore wind speed probabilistic forecasting in the Mediterranean Sea Neural networks to find the optimal forcing for offsetting the anthropogenic climate change effects Machine Learning Approach for Spatiotemporal Multivariate Optimization of Environmental Monitoring Sensor Locations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1