Yusuf Zuntu Abdullahi, Rabia Çağlayan, A. Mogulkoc, Y. Mogulkoc, F. Ersan
{"title":"新型稳定超宽带隙As2O3半导体材料","authors":"Yusuf Zuntu Abdullahi, Rabia Çağlayan, A. Mogulkoc, Y. Mogulkoc, F. Ersan","doi":"10.1088/2515-7639/acc099","DOIUrl":null,"url":null,"abstract":"Ultrawide band gap materials have numerous potential applications in deep ultraviolet optoelectronics, as well as next-generation high-power and radio frequency electronics. Through the first-principles calculations based on density functional theory calculations, we demonstrate that the As2O3 bulk and monolayer structures have excellent energetic, mechanical, and thermal stabilities. The bulk and monolayer of As2O3 come in two distinct structures, namely st1-As2O3, and st2-As2O3. We show that the st1-As2O3 and st2-As2O3 monolayer and bilayer could be mechanically exfoliated from their bulk material and found that the cleavage energy values are significantly lower than those reported for similarly layered materials. By performing Perdew–Burke–Ernzerhof (PBE) and Heyd–Scuseria–Ernzerhof (HSE06) band structure calculations, we found that the bulk and monolayers of As2O3 structures exhibit wide (PBE) and ultra-wide (HSE06) indirect band gaps. We further evaluate the As2O3 layered thickness-dependent band gaps and found that band gap decreases uniformly as the number of st1-As2O3 and st2-As2O3 layers increases. Our findings demonstrate the potential of the As2O3 structures for the future design of ultra-wide band gap semiconductor electronic devices.","PeriodicalId":16520,"journal":{"name":"Journal of Nonlinear Optical Physics & Materials","volume":"82 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2023-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"New stable ultrawide bandgap As2O3 semiconductor materials\",\"authors\":\"Yusuf Zuntu Abdullahi, Rabia Çağlayan, A. Mogulkoc, Y. Mogulkoc, F. Ersan\",\"doi\":\"10.1088/2515-7639/acc099\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ultrawide band gap materials have numerous potential applications in deep ultraviolet optoelectronics, as well as next-generation high-power and radio frequency electronics. Through the first-principles calculations based on density functional theory calculations, we demonstrate that the As2O3 bulk and monolayer structures have excellent energetic, mechanical, and thermal stabilities. The bulk and monolayer of As2O3 come in two distinct structures, namely st1-As2O3, and st2-As2O3. We show that the st1-As2O3 and st2-As2O3 monolayer and bilayer could be mechanically exfoliated from their bulk material and found that the cleavage energy values are significantly lower than those reported for similarly layered materials. By performing Perdew–Burke–Ernzerhof (PBE) and Heyd–Scuseria–Ernzerhof (HSE06) band structure calculations, we found that the bulk and monolayers of As2O3 structures exhibit wide (PBE) and ultra-wide (HSE06) indirect band gaps. We further evaluate the As2O3 layered thickness-dependent band gaps and found that band gap decreases uniformly as the number of st1-As2O3 and st2-As2O3 layers increases. Our findings demonstrate the potential of the As2O3 structures for the future design of ultra-wide band gap semiconductor electronic devices.\",\"PeriodicalId\":16520,\"journal\":{\"name\":\"Journal of Nonlinear Optical Physics & Materials\",\"volume\":\"82 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2023-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nonlinear Optical Physics & Materials\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/2515-7639/acc099\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nonlinear Optical Physics & Materials","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/2515-7639/acc099","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
New stable ultrawide bandgap As2O3 semiconductor materials
Ultrawide band gap materials have numerous potential applications in deep ultraviolet optoelectronics, as well as next-generation high-power and radio frequency electronics. Through the first-principles calculations based on density functional theory calculations, we demonstrate that the As2O3 bulk and monolayer structures have excellent energetic, mechanical, and thermal stabilities. The bulk and monolayer of As2O3 come in two distinct structures, namely st1-As2O3, and st2-As2O3. We show that the st1-As2O3 and st2-As2O3 monolayer and bilayer could be mechanically exfoliated from their bulk material and found that the cleavage energy values are significantly lower than those reported for similarly layered materials. By performing Perdew–Burke–Ernzerhof (PBE) and Heyd–Scuseria–Ernzerhof (HSE06) band structure calculations, we found that the bulk and monolayers of As2O3 structures exhibit wide (PBE) and ultra-wide (HSE06) indirect band gaps. We further evaluate the As2O3 layered thickness-dependent band gaps and found that band gap decreases uniformly as the number of st1-As2O3 and st2-As2O3 layers increases. Our findings demonstrate the potential of the As2O3 structures for the future design of ultra-wide band gap semiconductor electronic devices.
期刊介绍:
This journal is devoted to the rapidly advancing research and development in the field of nonlinear interactions of light with matter. Topics of interest include, but are not limited to, nonlinear optical materials, metamaterials and plasmonics, nano-photonic structures, stimulated scatterings, harmonic generations, wave mixing, real time holography, guided waves and solitons, bistabilities, instabilities and nonlinear dynamics, and their applications in laser and coherent lightwave amplification, guiding, switching, modulation, communication and information processing. Original papers, comprehensive reviews and rapid communications reporting original theories and observations are sought for in these and related areas. This journal will also publish proceedings of important international meetings and workshops. It is intended for graduate students, scientists and researchers in academic, industrial and government research institutions.