{"title":"热回收太阳能电池非辐射复合和带隙减小的影响","authors":"K. Kamide, T. Mochizuki, H. Akiyama, H. Takato","doi":"10.1109/PVSC45281.2020.9300716","DOIUrl":null,"url":null,"abstract":"Heat-recovery (HERC) solar cell is a concept of solar cell that converges heat into electricity and enables silicon solar cell to have high efficiency exceeding the Shockley-Queisser limit without requiring fast carrier extraction. In this paper, we show by numerical simulation its robustness against strong non-radiative recombination of the carriers and a positive effect arising from the bandgap reduction in the energy filtering layers.","PeriodicalId":6773,"journal":{"name":"2020 47th IEEE Photovoltaic Specialists Conference (PVSC)","volume":"1 1","pages":"2175-2177"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Effects of the Non-Radiative Recombination and Bandgap Reduction in Heat-Recovery Solar Cell\",\"authors\":\"K. Kamide, T. Mochizuki, H. Akiyama, H. Takato\",\"doi\":\"10.1109/PVSC45281.2020.9300716\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Heat-recovery (HERC) solar cell is a concept of solar cell that converges heat into electricity and enables silicon solar cell to have high efficiency exceeding the Shockley-Queisser limit without requiring fast carrier extraction. In this paper, we show by numerical simulation its robustness against strong non-radiative recombination of the carriers and a positive effect arising from the bandgap reduction in the energy filtering layers.\",\"PeriodicalId\":6773,\"journal\":{\"name\":\"2020 47th IEEE Photovoltaic Specialists Conference (PVSC)\",\"volume\":\"1 1\",\"pages\":\"2175-2177\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 47th IEEE Photovoltaic Specialists Conference (PVSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PVSC45281.2020.9300716\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 47th IEEE Photovoltaic Specialists Conference (PVSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVSC45281.2020.9300716","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Effects of the Non-Radiative Recombination and Bandgap Reduction in Heat-Recovery Solar Cell
Heat-recovery (HERC) solar cell is a concept of solar cell that converges heat into electricity and enables silicon solar cell to have high efficiency exceeding the Shockley-Queisser limit without requiring fast carrier extraction. In this paper, we show by numerical simulation its robustness against strong non-radiative recombination of the carriers and a positive effect arising from the bandgap reduction in the energy filtering layers.