{"title":"芯片上的系统内纠缠产生器和无歧义贝尔态鉴别器","authors":"F. Bovino","doi":"10.1109/ICASSP.2019.8683820","DOIUrl":null,"url":null,"abstract":"Bell measurements, jointly projecting two qubits onto the so-called Bell basis, constitute a crucial step in many quantum computation and communication protocols, including dense coding, quantum repeaters, and teleportation-based quantum computation. A problem is the impossibility of deterministic unambiguous Bell measurements using passive linear optics, even when arbitrarily many auxiliary photons, photon-number-resolving detectors, and dynamical (conditionally changing) networks are available. Current proposals for going over the 50% upper bound without using experimentally challenging nonlinearities rely on using entangled photon ancilla states and a sufficiently large interferometer to combine the signal and ancilla modes. We demonstrate that the novel Multiple Rail architecture, based on the propagation of a single photon in a complex multipath optical circuit (or multiwaveguide optical circuit), provides the possibility to perform deterministic Bell measurements so to unambiguously discrimate all four Bell States.","PeriodicalId":13203,"journal":{"name":"ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"6 1","pages":"7993-7997"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Intrasystem Entanglement Generator and Unambiguos Bell States Discriminator on Chip\",\"authors\":\"F. Bovino\",\"doi\":\"10.1109/ICASSP.2019.8683820\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bell measurements, jointly projecting two qubits onto the so-called Bell basis, constitute a crucial step in many quantum computation and communication protocols, including dense coding, quantum repeaters, and teleportation-based quantum computation. A problem is the impossibility of deterministic unambiguous Bell measurements using passive linear optics, even when arbitrarily many auxiliary photons, photon-number-resolving detectors, and dynamical (conditionally changing) networks are available. Current proposals for going over the 50% upper bound without using experimentally challenging nonlinearities rely on using entangled photon ancilla states and a sufficiently large interferometer to combine the signal and ancilla modes. We demonstrate that the novel Multiple Rail architecture, based on the propagation of a single photon in a complex multipath optical circuit (or multiwaveguide optical circuit), provides the possibility to perform deterministic Bell measurements so to unambiguously discrimate all four Bell States.\",\"PeriodicalId\":13203,\"journal\":{\"name\":\"ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"6 1\",\"pages\":\"7993-7997\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2019.8683820\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2019.8683820","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Intrasystem Entanglement Generator and Unambiguos Bell States Discriminator on Chip
Bell measurements, jointly projecting two qubits onto the so-called Bell basis, constitute a crucial step in many quantum computation and communication protocols, including dense coding, quantum repeaters, and teleportation-based quantum computation. A problem is the impossibility of deterministic unambiguous Bell measurements using passive linear optics, even when arbitrarily many auxiliary photons, photon-number-resolving detectors, and dynamical (conditionally changing) networks are available. Current proposals for going over the 50% upper bound without using experimentally challenging nonlinearities rely on using entangled photon ancilla states and a sufficiently large interferometer to combine the signal and ancilla modes. We demonstrate that the novel Multiple Rail architecture, based on the propagation of a single photon in a complex multipath optical circuit (or multiwaveguide optical circuit), provides the possibility to perform deterministic Bell measurements so to unambiguously discrimate all four Bell States.