打破限制之墙:理解和分析恶意域名删除

Eihal Alowaisheq, Peng Wang, Sumayah A. Alrwais, Xiaojing Liao, Xiaofeng Wang, Tasneem Alowaisheq, Xianghang Mi, Siyuan Tang, Baojun Liu
{"title":"打破限制之墙:理解和分析恶意域名删除","authors":"Eihal Alowaisheq, Peng Wang, Sumayah A. Alrwais, Xiaojing Liao, Xiaofeng Wang, Tasneem Alowaisheq, Xianghang Mi, Siyuan Tang, Baojun Liu","doi":"10.14722/ndss.2019.23243","DOIUrl":null,"url":null,"abstract":"Take-down operations aim to disrupt cybercrime involving malicious domains. In the past decade, many successful take-down operations have been reported, including those against the Conficker worm, and most recently, against VPNFilter. Although it plays an important role in fighting cybercrime, the domain take-down procedure is still surprisingly opaque. There seems to be no in-depth understanding about how the take-down operation works and whether there is due diligence to ensure its security and reliability. In this paper, we report the first systematic study on domain takedown. Our study was made possible via a large collection of data, including various sinkhole feeds and blacklists, passive DNS data spanning six years, and historical WHOIS information. Over these datasets, we built a unique methodology that extensively used various reverse lookups and other data analysis techniques to address the challenges in identifying taken-down domains, sinkhole operators, and take-down durations. Applying the methodology on the data, we discovered over 620K takendown domains and conducted a longitudinal analysis on the take-down process, thus facilitating a better understanding of the operation and its weaknesses. We found that more than 14% of domains taken-down over the past ten months have been released back to the domain market and that some of the released domains have been repurchased by the malicious actor again before being captured and seized, either by the same or different sinkholes. In addition, we showed that the misconfiguration of DNS records corresponding to the sinkholed domains allowed us to hijack a domain that was seized by the FBI. Further, we found that expired sinkholes have caused the transfer of around 30K takendown domains whose traffic is now under the control of new owners.","PeriodicalId":20444,"journal":{"name":"Proceedings 2019 Network and Distributed System Security Symposium","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"Cracking the Wall of Confinement: Understanding and Analyzing Malicious Domain Take-downs\",\"authors\":\"Eihal Alowaisheq, Peng Wang, Sumayah A. Alrwais, Xiaojing Liao, Xiaofeng Wang, Tasneem Alowaisheq, Xianghang Mi, Siyuan Tang, Baojun Liu\",\"doi\":\"10.14722/ndss.2019.23243\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Take-down operations aim to disrupt cybercrime involving malicious domains. In the past decade, many successful take-down operations have been reported, including those against the Conficker worm, and most recently, against VPNFilter. Although it plays an important role in fighting cybercrime, the domain take-down procedure is still surprisingly opaque. There seems to be no in-depth understanding about how the take-down operation works and whether there is due diligence to ensure its security and reliability. In this paper, we report the first systematic study on domain takedown. Our study was made possible via a large collection of data, including various sinkhole feeds and blacklists, passive DNS data spanning six years, and historical WHOIS information. Over these datasets, we built a unique methodology that extensively used various reverse lookups and other data analysis techniques to address the challenges in identifying taken-down domains, sinkhole operators, and take-down durations. Applying the methodology on the data, we discovered over 620K takendown domains and conducted a longitudinal analysis on the take-down process, thus facilitating a better understanding of the operation and its weaknesses. We found that more than 14% of domains taken-down over the past ten months have been released back to the domain market and that some of the released domains have been repurchased by the malicious actor again before being captured and seized, either by the same or different sinkholes. In addition, we showed that the misconfiguration of DNS records corresponding to the sinkholed domains allowed us to hijack a domain that was seized by the FBI. Further, we found that expired sinkholes have caused the transfer of around 30K takendown domains whose traffic is now under the control of new owners.\",\"PeriodicalId\":20444,\"journal\":{\"name\":\"Proceedings 2019 Network and Distributed System Security Symposium\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 2019 Network and Distributed System Security Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14722/ndss.2019.23243\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 2019 Network and Distributed System Security Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14722/ndss.2019.23243","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

摘要

删除行动旨在破坏涉及恶意域名的网络犯罪。在过去的十年中,有许多成功的拆除行动被报道,包括针对Conficker蠕虫的拆除行动,以及最近针对VPNFilter的拆除行动。尽管它在打击网络犯罪方面发挥着重要作用,但撤除域名的程序仍然令人惊讶地不透明。似乎没有深入了解拆除操作是如何工作的,以及是否有尽职调查来确保其安全性和可靠性。在本文中,我们首次对域名删除进行了系统的研究。我们的研究是通过大量数据收集而成的,包括各种天坑馈送和黑名单、六年被动DNS数据和历史WHOIS信息。在这些数据集上,我们建立了一种独特的方法,广泛使用各种反向查找和其他数据分析技术来解决识别陷落域、陷落井操作员和陷落持续时间方面的挑战。将该方法应用于数据,我们发现了超过620K的拆除域,并对拆除过程进行了纵向分析,从而有助于更好地了解操作及其弱点。我们发现,在过去10个月里,超过14%被关闭的域名已经被释放回域名市场,其中一些被释放的域名在被相同或不同的天坑捕获和扣押之前再次被恶意行为者重新购买。此外,我们还发现,与塌陷域名对应的DNS记录配置错误,使我们能够劫持一个被FBI查封的域名。此外,我们发现过期的天坑已经导致了大约3万个被关闭的域名的转移,这些域名的流量现在处于新所有者的控制之下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cracking the Wall of Confinement: Understanding and Analyzing Malicious Domain Take-downs
Take-down operations aim to disrupt cybercrime involving malicious domains. In the past decade, many successful take-down operations have been reported, including those against the Conficker worm, and most recently, against VPNFilter. Although it plays an important role in fighting cybercrime, the domain take-down procedure is still surprisingly opaque. There seems to be no in-depth understanding about how the take-down operation works and whether there is due diligence to ensure its security and reliability. In this paper, we report the first systematic study on domain takedown. Our study was made possible via a large collection of data, including various sinkhole feeds and blacklists, passive DNS data spanning six years, and historical WHOIS information. Over these datasets, we built a unique methodology that extensively used various reverse lookups and other data analysis techniques to address the challenges in identifying taken-down domains, sinkhole operators, and take-down durations. Applying the methodology on the data, we discovered over 620K takendown domains and conducted a longitudinal analysis on the take-down process, thus facilitating a better understanding of the operation and its weaknesses. We found that more than 14% of domains taken-down over the past ten months have been released back to the domain market and that some of the released domains have been repurchased by the malicious actor again before being captured and seized, either by the same or different sinkholes. In addition, we showed that the misconfiguration of DNS records corresponding to the sinkholed domains allowed us to hijack a domain that was seized by the FBI. Further, we found that expired sinkholes have caused the transfer of around 30K takendown domains whose traffic is now under the control of new owners.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Network and System Security: 17th International Conference, NSS 2023, Canterbury, UK, August 14–16, 2023, Proceedings Network and System Security: 16th International Conference, NSS 2022, Denarau Island, Fiji, December 9–12, 2022, Proceedings Network and System Security: 15th International Conference, NSS 2021, Tianjin, China, October 23, 2021, Proceedings Network and System Security: 14th International Conference, NSS 2020, Melbourne, VIC, Australia, November 25–27, 2020, Proceedings Neuro-Symbolic Execution: Augmenting Symbolic Execution with Neural Constraints
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1