Rifqi Rizqullah Eka Prasetyo, M. Ichwan
{"title":"Perbandingan Metode Deep Residual Network 50 dan Deep Residual Network 152 untuk Deteksi Penyakit Pneumonia pada Manusia","authors":"Rifqi Rizqullah Eka Prasetyo, M. Ichwan","doi":"10.26760/mindjournal.v6i2.168-182","DOIUrl":null,"url":null,"abstract":"AbstrakPneumonia merupakan salah satu masalah Kesehatan yang sering dijumpai dan mempunyai dampak yang signifikan di seluruh dunia. Insiden pneumonia dilaporkan meningkat sesuai dengan bertambahnya usia. Pneumonia merupakan diagnosis terbanyak ketiga. Dalam penelitian ini penulis mengidentifikasi citra paru-paru dalam bentuk citra x-ray dengan metode ResNet-50 dan ResNet-152 sebagai ekstrasi ciri dan klasifikasinya. Performa sistem diukur berdasarkan nilai akurasi, presisi, recall, dan f-measure. Eksperimen dilakukan pada dataset paru-paru dengan menggunakan dua metode tersebut dan didapatkan akurasi terbaik pada ResNet-152. Hasil menunjukkan nilai rata-rata terbaik accuracy 89,3%, precision 88,8%, recall 89,6%, dan f-measure 89%. Hasil tersebut dipengaruhi oleh jumlah dataset dari citra training, citra validation, dan citra uji.Kata kunci: Penumonia, Deep Residual Network, RESNET-50, RESNET-152AbstractPneumonia is one of the most common health problems and has a significant impact throughout the world. The incidence of pneumonia is reported to increase with age. Pneumonia is the third most common diagnosis. In this study, the authors identified lung images in the form of x-ray images using the ResNet-50 and ResNet-152 methods as feature extraction and classification. System performance is measured based on the values of accuracy, precision, recall, and f-measure. Experiments were carried out on lung datasets using these two methods and the best accuracy was obtained on ResNet-152. The results show the best average value for accuracy is 89.3%, precision is 88.8%, recall is 89.6%, and f-measure is 89%. These results are influenced by the number of datasets from training images, validation images, and test images.Keywords: Penumonia, Deep Residual Network, RESNET-50, RESNET-152","PeriodicalId":43900,"journal":{"name":"Time & Mind-The Journal of Archaeology Consciousness and Culture","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2021-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Time & Mind-The Journal of Archaeology Consciousness and Culture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26760/mindjournal.v6i2.168-182","RegionNum":4,"RegionCategory":"历史学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ARCHAEOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

abstrarak肺炎是一个常见的健康问题,对世界各地都有重大影响。据报道,肺炎事件随着年龄的增长而增加。肺炎是第三大诊断。在本研究中,作者通过ResNet-50和ResNet-152的分类方法,以x光图像的形式识别了肺的图像。系统性能是根据准确性、精度、召回和f-measure值来测量的。在肺的数据集中进行的实验使用了这两种方法,并在ResNet-152上获得了最佳的准确性。结果显示了准确89.3%,准确88.8%,记忆89.6%和f-measure 89%。培训意象、验证意象和测试意象的数据数量影响了研究结果。关键词:人机深度剩余网络,RESNET-50, resnet -152 abstract肺炎是最常见的健康问题之一有关肺炎的指控正在增加年龄。肺炎是第三种最常见的诊断。在这项研究中,当局使用了辐射50和辐射152种手段作为外化和分类。系统表现是基于准确、精确、记忆和f-measure的价值。实验是通过这两种方法和最好的预测来确定的。《best results秀平均价值为3%,高级是88评比是89。8%,召回是89。6%和f-measure是89%。这些results是influenced by datasets当家》从训练图像,validation images和测试图像。音调:音量,剩余网络,RESNET-50, RESNET-152
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Perbandingan Metode Deep Residual Network 50 dan Deep Residual Network 152 untuk Deteksi Penyakit Pneumonia pada Manusia
AbstrakPneumonia merupakan salah satu masalah Kesehatan yang sering dijumpai dan mempunyai dampak yang signifikan di seluruh dunia. Insiden pneumonia dilaporkan meningkat sesuai dengan bertambahnya usia. Pneumonia merupakan diagnosis terbanyak ketiga. Dalam penelitian ini penulis mengidentifikasi citra paru-paru dalam bentuk citra x-ray dengan metode ResNet-50 dan ResNet-152 sebagai ekstrasi ciri dan klasifikasinya. Performa sistem diukur berdasarkan nilai akurasi, presisi, recall, dan f-measure. Eksperimen dilakukan pada dataset paru-paru dengan menggunakan dua metode tersebut dan didapatkan akurasi terbaik pada ResNet-152. Hasil menunjukkan nilai rata-rata terbaik accuracy 89,3%, precision 88,8%, recall 89,6%, dan f-measure 89%. Hasil tersebut dipengaruhi oleh jumlah dataset dari citra training, citra validation, dan citra uji.Kata kunci: Penumonia, Deep Residual Network, RESNET-50, RESNET-152AbstractPneumonia is one of the most common health problems and has a significant impact throughout the world. The incidence of pneumonia is reported to increase with age. Pneumonia is the third most common diagnosis. In this study, the authors identified lung images in the form of x-ray images using the ResNet-50 and ResNet-152 methods as feature extraction and classification. System performance is measured based on the values of accuracy, precision, recall, and f-measure. Experiments were carried out on lung datasets using these two methods and the best accuracy was obtained on ResNet-152. The results show the best average value for accuracy is 89.3%, precision is 88.8%, recall is 89.6%, and f-measure is 89%. These results are influenced by the number of datasets from training images, validation images, and test images.Keywords: Penumonia, Deep Residual Network, RESNET-50, RESNET-152
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
23
期刊最新文献
The Rough Tor Effect: early prehistoric monuments focusing on significant tors in Cornwall Apolline divination: hallucinogenic substances or cognitive inputs? The case of the laurel Performance theory: a growing interest in rock art research Archaeology at the intersection between cognitive neuroscience, performance theory, and architecture: from psychoactive substances to rock art and bone shelters Living inside a mammoth
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1