{"title":"Perbandingan Metode Deep Residual Network 50 dan Deep Residual Network 152 untuk Deteksi Penyakit Pneumonia pada Manusia","authors":"Rifqi Rizqullah Eka Prasetyo, M. Ichwan","doi":"10.26760/mindjournal.v6i2.168-182","DOIUrl":null,"url":null,"abstract":"AbstrakPneumonia merupakan salah satu masalah Kesehatan yang sering dijumpai dan mempunyai dampak yang signifikan di seluruh dunia. Insiden pneumonia dilaporkan meningkat sesuai dengan bertambahnya usia. Pneumonia merupakan diagnosis terbanyak ketiga. Dalam penelitian ini penulis mengidentifikasi citra paru-paru dalam bentuk citra x-ray dengan metode ResNet-50 dan ResNet-152 sebagai ekstrasi ciri dan klasifikasinya. Performa sistem diukur berdasarkan nilai akurasi, presisi, recall, dan f-measure. Eksperimen dilakukan pada dataset paru-paru dengan menggunakan dua metode tersebut dan didapatkan akurasi terbaik pada ResNet-152. Hasil menunjukkan nilai rata-rata terbaik accuracy 89,3%, precision 88,8%, recall 89,6%, dan f-measure 89%. Hasil tersebut dipengaruhi oleh jumlah dataset dari citra training, citra validation, dan citra uji.Kata kunci: Penumonia, Deep Residual Network, RESNET-50, RESNET-152AbstractPneumonia is one of the most common health problems and has a significant impact throughout the world. The incidence of pneumonia is reported to increase with age. Pneumonia is the third most common diagnosis. In this study, the authors identified lung images in the form of x-ray images using the ResNet-50 and ResNet-152 methods as feature extraction and classification. System performance is measured based on the values of accuracy, precision, recall, and f-measure. Experiments were carried out on lung datasets using these two methods and the best accuracy was obtained on ResNet-152. The results show the best average value for accuracy is 89.3%, precision is 88.8%, recall is 89.6%, and f-measure is 89%. These results are influenced by the number of datasets from training images, validation images, and test images.Keywords: Penumonia, Deep Residual Network, RESNET-50, RESNET-152","PeriodicalId":43900,"journal":{"name":"Time & Mind-The Journal of Archaeology Consciousness and Culture","volume":"58 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2021-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Time & Mind-The Journal of Archaeology Consciousness and Culture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26760/mindjournal.v6i2.168-182","RegionNum":4,"RegionCategory":"历史学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ARCHAEOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
abstrarak肺炎是一个常见的健康问题,对世界各地都有重大影响。据报道,肺炎事件随着年龄的增长而增加。肺炎是第三大诊断。在本研究中,作者通过ResNet-50和ResNet-152的分类方法,以x光图像的形式识别了肺的图像。系统性能是根据准确性、精度、召回和f-measure值来测量的。在肺的数据集中进行的实验使用了这两种方法,并在ResNet-152上获得了最佳的准确性。结果显示了准确89.3%,准确88.8%,记忆89.6%和f-measure 89%。培训意象、验证意象和测试意象的数据数量影响了研究结果。关键词:人机深度剩余网络,RESNET-50, resnet -152 abstract肺炎是最常见的健康问题之一有关肺炎的指控正在增加年龄。肺炎是第三种最常见的诊断。在这项研究中,当局使用了辐射50和辐射152种手段作为外化和分类。系统表现是基于准确、精确、记忆和f-measure的价值。实验是通过这两种方法和最好的预测来确定的。《best results秀平均价值为3%,高级是88评比是89。8%,召回是89。6%和f-measure是89%。这些results是influenced by datasets当家》从训练图像,validation images和测试图像。音调:音量,剩余网络,RESNET-50, RESNET-152
Perbandingan Metode Deep Residual Network 50 dan Deep Residual Network 152 untuk Deteksi Penyakit Pneumonia pada Manusia
AbstrakPneumonia merupakan salah satu masalah Kesehatan yang sering dijumpai dan mempunyai dampak yang signifikan di seluruh dunia. Insiden pneumonia dilaporkan meningkat sesuai dengan bertambahnya usia. Pneumonia merupakan diagnosis terbanyak ketiga. Dalam penelitian ini penulis mengidentifikasi citra paru-paru dalam bentuk citra x-ray dengan metode ResNet-50 dan ResNet-152 sebagai ekstrasi ciri dan klasifikasinya. Performa sistem diukur berdasarkan nilai akurasi, presisi, recall, dan f-measure. Eksperimen dilakukan pada dataset paru-paru dengan menggunakan dua metode tersebut dan didapatkan akurasi terbaik pada ResNet-152. Hasil menunjukkan nilai rata-rata terbaik accuracy 89,3%, precision 88,8%, recall 89,6%, dan f-measure 89%. Hasil tersebut dipengaruhi oleh jumlah dataset dari citra training, citra validation, dan citra uji.Kata kunci: Penumonia, Deep Residual Network, RESNET-50, RESNET-152AbstractPneumonia is one of the most common health problems and has a significant impact throughout the world. The incidence of pneumonia is reported to increase with age. Pneumonia is the third most common diagnosis. In this study, the authors identified lung images in the form of x-ray images using the ResNet-50 and ResNet-152 methods as feature extraction and classification. System performance is measured based on the values of accuracy, precision, recall, and f-measure. Experiments were carried out on lung datasets using these two methods and the best accuracy was obtained on ResNet-152. The results show the best average value for accuracy is 89.3%, precision is 88.8%, recall is 89.6%, and f-measure is 89%. These results are influenced by the number of datasets from training images, validation images, and test images.Keywords: Penumonia, Deep Residual Network, RESNET-50, RESNET-152