{"title":"新兴架构的灵活分析软件","authors":"K. Moreland, Brad King, Robert Maynard, K. Ma","doi":"10.1109/SC.Companion.2012.115","DOIUrl":null,"url":null,"abstract":"We are on the threshold of a transformative change in the basic architecture of high-performance computing. The use of accelerator processors, characterized by large core counts, shared but asymmetrical memory, and heavy thread loading, is quickly becoming the norm in high performance computing. These accelerators represent significant challenges in updating our existing base of software. An intrinsic problem with this transition is a fundamental programming shift from message passing processes to much more fine thread scheduling with memory sharing. Another problem is the lack of stability in accelerator implementation; processor and compiler technology is currently changing rapidly. In this paper we describe our approach to address these two immediate problems with respect to scientific analysis and visualization algorithms. Our approach to accelerator programming forms the basis of the Dax toolkit, a framework to build data analysis and visualization algorithms applicable to exascale computing.","PeriodicalId":6346,"journal":{"name":"2012 SC Companion: High Performance Computing, Networking Storage and Analysis","volume":"48 1","pages":"821-826"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Flexible Analysis Software for Emerging Architectures\",\"authors\":\"K. Moreland, Brad King, Robert Maynard, K. Ma\",\"doi\":\"10.1109/SC.Companion.2012.115\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We are on the threshold of a transformative change in the basic architecture of high-performance computing. The use of accelerator processors, characterized by large core counts, shared but asymmetrical memory, and heavy thread loading, is quickly becoming the norm in high performance computing. These accelerators represent significant challenges in updating our existing base of software. An intrinsic problem with this transition is a fundamental programming shift from message passing processes to much more fine thread scheduling with memory sharing. Another problem is the lack of stability in accelerator implementation; processor and compiler technology is currently changing rapidly. In this paper we describe our approach to address these two immediate problems with respect to scientific analysis and visualization algorithms. Our approach to accelerator programming forms the basis of the Dax toolkit, a framework to build data analysis and visualization algorithms applicable to exascale computing.\",\"PeriodicalId\":6346,\"journal\":{\"name\":\"2012 SC Companion: High Performance Computing, Networking Storage and Analysis\",\"volume\":\"48 1\",\"pages\":\"821-826\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 SC Companion: High Performance Computing, Networking Storage and Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SC.Companion.2012.115\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 SC Companion: High Performance Computing, Networking Storage and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SC.Companion.2012.115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Flexible Analysis Software for Emerging Architectures
We are on the threshold of a transformative change in the basic architecture of high-performance computing. The use of accelerator processors, characterized by large core counts, shared but asymmetrical memory, and heavy thread loading, is quickly becoming the norm in high performance computing. These accelerators represent significant challenges in updating our existing base of software. An intrinsic problem with this transition is a fundamental programming shift from message passing processes to much more fine thread scheduling with memory sharing. Another problem is the lack of stability in accelerator implementation; processor and compiler technology is currently changing rapidly. In this paper we describe our approach to address these two immediate problems with respect to scientific analysis and visualization algorithms. Our approach to accelerator programming forms the basis of the Dax toolkit, a framework to build data analysis and visualization algorithms applicable to exascale computing.