Blinder——可扩展的、健壮的匿名承诺广播

Ittai Abraham, Benny Pinkas, Avishay Yanai
{"title":"Blinder——可扩展的、健壮的匿名承诺广播","authors":"Ittai Abraham, Benny Pinkas, Avishay Yanai","doi":"10.1145/3372297.3417261","DOIUrl":null,"url":null,"abstract":"Anonymous Committed Broadcast is a functionality that extends DC-nets and allows a set of clients to privately commit messages to set of servers, which can then simultaneously open all committed messages in a random ordering. Anonymity holds since no one can learn the ordering or the content of the client's committed message. We present Blinder, the first system that provides a scalable and fully robust solution for anonymous committed broadcast. Blinder maintains both properties of security (anonymity) and robustness (aka. 'guaranteed output delivery' or 'availability') in the face of a global active (malicious) adversary. Moreover, Blinder is censorship resistant, that is, an honest client cannot be blocked from participating. Blinder obtains its security and scalability by carefully combining classical and state-of-the-art techniques from the fields of anonymous communication and secure multiparty computation (MPC). Relying on MPC for such a system is beneficial since it naturally allows the parties (servers) to enforce some properties on accepted messages prior their publication. A GPU based implementation of Blinder with 5 servers, which accepts 1 million clients, incurs a latency of less than 8 minutes; faster by a factor of $>100$ than the 3-servers Riposte protocol (S&P '15), which is not robust and not censorship resistant; we get an even larger factor when comparing to AsynchroMix and PowerMix (CCS '19), which are the only ones that guarantee fairness (or robustness in the online phase).","PeriodicalId":20481,"journal":{"name":"Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security","volume":"88 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"Blinder -- Scalable, Robust Anonymous Committed Broadcast\",\"authors\":\"Ittai Abraham, Benny Pinkas, Avishay Yanai\",\"doi\":\"10.1145/3372297.3417261\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Anonymous Committed Broadcast is a functionality that extends DC-nets and allows a set of clients to privately commit messages to set of servers, which can then simultaneously open all committed messages in a random ordering. Anonymity holds since no one can learn the ordering or the content of the client's committed message. We present Blinder, the first system that provides a scalable and fully robust solution for anonymous committed broadcast. Blinder maintains both properties of security (anonymity) and robustness (aka. 'guaranteed output delivery' or 'availability') in the face of a global active (malicious) adversary. Moreover, Blinder is censorship resistant, that is, an honest client cannot be blocked from participating. Blinder obtains its security and scalability by carefully combining classical and state-of-the-art techniques from the fields of anonymous communication and secure multiparty computation (MPC). Relying on MPC for such a system is beneficial since it naturally allows the parties (servers) to enforce some properties on accepted messages prior their publication. A GPU based implementation of Blinder with 5 servers, which accepts 1 million clients, incurs a latency of less than 8 minutes; faster by a factor of $>100$ than the 3-servers Riposte protocol (S&P '15), which is not robust and not censorship resistant; we get an even larger factor when comparing to AsynchroMix and PowerMix (CCS '19), which are the only ones that guarantee fairness (or robustness in the online phase).\",\"PeriodicalId\":20481,\"journal\":{\"name\":\"Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security\",\"volume\":\"88 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3372297.3417261\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3372297.3417261","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

摘要

匿名提交广播是一种扩展DC-nets的功能,它允许一组客户端私下向一组服务器提交消息,然后这些服务器可以同时以随机顺序打开所有提交的消息。匿名保持不变,因为没有人可以了解客户端提交消息的顺序或内容。我们提出了Blinder,这是第一个为匿名提交广播提供可扩展且完全健壮的解决方案的系统。Blinder同时保持了安全性(匿名性)和健壮性(也就是健壮性)。“保证输出交付”或“可用性”)面对全球活动(恶意)对手。此外,Blinder是抗审查的,也就是说,一个诚实的客户不能被阻止参与。Blinder通过仔细结合匿名通信和安全多方计算(MPC)领域的经典和最先进技术,获得其安全性和可扩展性。对于这样的系统,依赖MPC是有益的,因为它自然地允许各方(服务器)在发布之前对已接受的消息强制执行某些属性。基于GPU的Blinder实现有5个服务器,可以接受100万个客户端,延迟不到8分钟;比3服务器的Riposte协议(标准普尔15)快100美元以上,后者不健壮,也不耐审查;当与AsynchroMix和PowerMix (CCS '19)进行比较时,我们得到了一个更大的因素,这是唯一保证公平性(或在线阶段的鲁棒性)的因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Blinder -- Scalable, Robust Anonymous Committed Broadcast
Anonymous Committed Broadcast is a functionality that extends DC-nets and allows a set of clients to privately commit messages to set of servers, which can then simultaneously open all committed messages in a random ordering. Anonymity holds since no one can learn the ordering or the content of the client's committed message. We present Blinder, the first system that provides a scalable and fully robust solution for anonymous committed broadcast. Blinder maintains both properties of security (anonymity) and robustness (aka. 'guaranteed output delivery' or 'availability') in the face of a global active (malicious) adversary. Moreover, Blinder is censorship resistant, that is, an honest client cannot be blocked from participating. Blinder obtains its security and scalability by carefully combining classical and state-of-the-art techniques from the fields of anonymous communication and secure multiparty computation (MPC). Relying on MPC for such a system is beneficial since it naturally allows the parties (servers) to enforce some properties on accepted messages prior their publication. A GPU based implementation of Blinder with 5 servers, which accepts 1 million clients, incurs a latency of less than 8 minutes; faster by a factor of $>100$ than the 3-servers Riposte protocol (S&P '15), which is not robust and not censorship resistant; we get an even larger factor when comparing to AsynchroMix and PowerMix (CCS '19), which are the only ones that guarantee fairness (or robustness in the online phase).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Session details: Session 1D: Applied Cryptography and Cryptanalysis HACLxN: Verified Generic SIMD Crypto (for all your favourite platforms) Pointproofs: Aggregating Proofs for Multiple Vector Commitments Session details: Session 4D: Distributed Protocols A Performant, Misuse-Resistant API for Primality Testing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1