最优潮流的乘子启发式非凸交替方向法

Seungil You, Qiuyu Peng
{"title":"最优潮流的乘子启发式非凸交替方向法","authors":"Seungil You, Qiuyu Peng","doi":"10.1109/SmartGridComm.2014.7007744","DOIUrl":null,"url":null,"abstract":"The optimal power flow (OPF) problem is fundamental to power system planing and operation. It is a non-convex optimization problem and the semidefinite programming (SDP) relaxation has been proposed recently. However, the SDP relaxation may give an infeasible solution to the original OPF problem. In this paper, we apply the alternating direction method of multiplier method to recover a feasible solution when the solution of the SDP relaxation is infeasible to the OPF problem. Specifically, the proposed procedure iterates between a convex optimization problem, and a non-convex optimization with the rank constraint. By exploiting the special structure of the rank constraint, we obtain a closed form solution of the non-convex optimization based on the singular value decomposition. As a result, we obtain a computationally tractable heuristic for the OPF problem. Although the convergence of the algorithm is not theoretically guaranteed, our simulations show that a feasible solution can be recovered using our method.","PeriodicalId":6499,"journal":{"name":"2014 IEEE International Conference on Smart Grid Communications (SmartGridComm)","volume":"31 8 1","pages":"788-793"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"A non-convex alternating direction method of multipliers heuristic for optimal power flow\",\"authors\":\"Seungil You, Qiuyu Peng\",\"doi\":\"10.1109/SmartGridComm.2014.7007744\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The optimal power flow (OPF) problem is fundamental to power system planing and operation. It is a non-convex optimization problem and the semidefinite programming (SDP) relaxation has been proposed recently. However, the SDP relaxation may give an infeasible solution to the original OPF problem. In this paper, we apply the alternating direction method of multiplier method to recover a feasible solution when the solution of the SDP relaxation is infeasible to the OPF problem. Specifically, the proposed procedure iterates between a convex optimization problem, and a non-convex optimization with the rank constraint. By exploiting the special structure of the rank constraint, we obtain a closed form solution of the non-convex optimization based on the singular value decomposition. As a result, we obtain a computationally tractable heuristic for the OPF problem. Although the convergence of the algorithm is not theoretically guaranteed, our simulations show that a feasible solution can be recovered using our method.\",\"PeriodicalId\":6499,\"journal\":{\"name\":\"2014 IEEE International Conference on Smart Grid Communications (SmartGridComm)\",\"volume\":\"31 8 1\",\"pages\":\"788-793\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Conference on Smart Grid Communications (SmartGridComm)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SmartGridComm.2014.7007744\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Smart Grid Communications (SmartGridComm)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SmartGridComm.2014.7007744","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

摘要

最优潮流问题是电力系统规划和运行的基础问题。这是一个非凸优化问题,近年来提出了半定规划松弛法。然而,SDP松弛可能会给原OPF问题一个不可行的解决方案。在OPF问题中,当SDP松弛解不可行时,我们应用乘子法的交替方向法来恢复可行解。具体来说,所提出的过程在一个凸优化问题和一个具有秩约束的非凸优化问题之间迭代。利用秩约束的特殊结构,得到了基于奇异值分解的非凸优化问题的封闭解。结果,我们得到了一个计算上易于处理的OPF问题启发式算法。虽然从理论上不能保证算法的收敛性,但我们的仿真表明,使用我们的方法可以恢复一个可行的解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A non-convex alternating direction method of multipliers heuristic for optimal power flow
The optimal power flow (OPF) problem is fundamental to power system planing and operation. It is a non-convex optimization problem and the semidefinite programming (SDP) relaxation has been proposed recently. However, the SDP relaxation may give an infeasible solution to the original OPF problem. In this paper, we apply the alternating direction method of multiplier method to recover a feasible solution when the solution of the SDP relaxation is infeasible to the OPF problem. Specifically, the proposed procedure iterates between a convex optimization problem, and a non-convex optimization with the rank constraint. By exploiting the special structure of the rank constraint, we obtain a closed form solution of the non-convex optimization based on the singular value decomposition. As a result, we obtain a computationally tractable heuristic for the OPF problem. Although the convergence of the algorithm is not theoretically guaranteed, our simulations show that a feasible solution can be recovered using our method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Household Level Electricity Load Forecasting Using Echo State Network Roaming electric vehicle charging and billing: An anonymous multi-user protocol Generating realistic Smart Grid communication topologies based on real-data Cooperative closed-loop MIMO selective transmissions in a HV environment Integration of V2H/V2G hybrid system for demand response in distribution network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1