利用平面电极制备分散型无机电致发光面板

T. Nonaka, Shin-ichi Yamamoto
{"title":"利用平面电极制备分散型无机电致发光面板","authors":"T. Nonaka, Shin-ichi Yamamoto","doi":"10.14723/TMRSJ.41.235","DOIUrl":null,"url":null,"abstract":"In dispersion-type inorganic electroluminescence (EL) devices, a high-voltage drive is required to achieve high luminescence, as the thickness of the phosphor layer is 20 μm or more. Transparent electrodes such as indium tin oxide (ITO) are required, because light emission from the phosphor layer is necessary. To solve these issues, we developed a circular comb-type metal electrode with several narrow gaps on a glass substrate that produces a strong electric field, which is impossible to achieve with conventional structures. A comb-type metal (Au) electrode and a comb-type ITO electrode were used in the experiments. The luminance from the phosphor layer side at 30 V/μm was 26.9 cd/m for the Au electrode, which was twice that for the ITO electrode (19.9 cd/m). Thus, it is possible to fabricate a light-emitting device without transmissive electrodes by using a lustrous metallic material such as Au with a circular comb-type design.","PeriodicalId":23220,"journal":{"name":"Transactions-Materials Research Society of Japan","volume":"40 1","pages":"235-241"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fabrication of Dispersion-type Inorganic Electroluminescence Panel Using Planar Electrodes\",\"authors\":\"T. Nonaka, Shin-ichi Yamamoto\",\"doi\":\"10.14723/TMRSJ.41.235\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In dispersion-type inorganic electroluminescence (EL) devices, a high-voltage drive is required to achieve high luminescence, as the thickness of the phosphor layer is 20 μm or more. Transparent electrodes such as indium tin oxide (ITO) are required, because light emission from the phosphor layer is necessary. To solve these issues, we developed a circular comb-type metal electrode with several narrow gaps on a glass substrate that produces a strong electric field, which is impossible to achieve with conventional structures. A comb-type metal (Au) electrode and a comb-type ITO electrode were used in the experiments. The luminance from the phosphor layer side at 30 V/μm was 26.9 cd/m for the Au electrode, which was twice that for the ITO electrode (19.9 cd/m). Thus, it is possible to fabricate a light-emitting device without transmissive electrodes by using a lustrous metallic material such as Au with a circular comb-type design.\",\"PeriodicalId\":23220,\"journal\":{\"name\":\"Transactions-Materials Research Society of Japan\",\"volume\":\"40 1\",\"pages\":\"235-241\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions-Materials Research Society of Japan\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14723/TMRSJ.41.235\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions-Materials Research Society of Japan","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14723/TMRSJ.41.235","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在色散型无机电致发光器件中,由于荧光粉层的厚度为20 μm以上,需要采用高压驱动来实现高发光。透明电极如氧化铟锡(ITO)是必需的,因为从荧光粉层发光是必要的。为了解决这些问题,我们开发了一种圆形梳状金属电极,在玻璃基板上有几个狭窄的间隙,可以产生强大的电场,这是传统结构无法实现的。实验采用梳状金属(Au)电极和梳状ITO电极。在30 V/μm下,Au电极的荧光粉层侧发光亮度为26.9 cd/m,是ITO电极(19.9 cd/m)的2倍。因此,可以通过使用具有圆形梳型设计的有光泽的金属材料(例如Au)来制造没有透射电极的发光器件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fabrication of Dispersion-type Inorganic Electroluminescence Panel Using Planar Electrodes
In dispersion-type inorganic electroluminescence (EL) devices, a high-voltage drive is required to achieve high luminescence, as the thickness of the phosphor layer is 20 μm or more. Transparent electrodes such as indium tin oxide (ITO) are required, because light emission from the phosphor layer is necessary. To solve these issues, we developed a circular comb-type metal electrode with several narrow gaps on a glass substrate that produces a strong electric field, which is impossible to achieve with conventional structures. A comb-type metal (Au) electrode and a comb-type ITO electrode were used in the experiments. The luminance from the phosphor layer side at 30 V/μm was 26.9 cd/m for the Au electrode, which was twice that for the ITO electrode (19.9 cd/m). Thus, it is possible to fabricate a light-emitting device without transmissive electrodes by using a lustrous metallic material such as Au with a circular comb-type design.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Variation in electrical and structural properties of Ga-doped ZnO films caused by oxygen out-diffusion Influence of P2O5 Content on In Vitro Behavior of CaO-ZnO-P2O5 Bioglass Powder Compacts Reduction in Weight of Rice Hull Charcoal with Adsorbed Cesium and Strontium Transactions of the Materials Research Society of Japan Tailoring Copper-loaded Woody-derived Carbon Materials by Thermal Treatment Constructing Double Helical DNA Supramolecule in Ionic Liquids
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1