推断社会网络中的社会角色和地位

Yuchen Zhao, Guan Wang, Philip S. Yu, Shaobo Liu, Simon Zhang
{"title":"推断社会网络中的社会角色和地位","authors":"Yuchen Zhao, Guan Wang, Philip S. Yu, Shaobo Liu, Simon Zhang","doi":"10.1145/2487575.2487597","DOIUrl":null,"url":null,"abstract":"Users in online social networks play a variety of social roles and statuses. For example, users in Twitter can be represented as advertiser, content contributor, information receiver, etc; users in Linkedin can be in different professional roles, such as engineer, salesperson and recruiter. Previous research work mainly focuses on using categorical and textual information to predict the attributes of users. However, it cannot be applied to a large number of users in real social networks, since much of such information is missing, outdated and non-standard. In this paper, we investigate the social roles and statuses that people act in online social networks in the perspective of network structures, since the uniqueness of social networks is connecting people. We quantitatively analyze a number of key social principles and theories that correlate with social roles and statuses. We systematically study how the network characteristics reflect the social situations of users in an online society. We discover patterns of homophily, the tendency of users to connect with users with similar social roles and statuses. In addition, we observe that different factors in social theories influence the social role/status of an individual user to various extent, since these social principles represent different aspects of the network. We then introduce an optimization framework based on Factor Conditioning Symmetry, and we propose a probabilistic model to integrate the optimization framework on local structural information as well as network influence to infer the unknown social roles and statuses of online users. We will present experiment results to show the effectiveness of the inference.","PeriodicalId":20472,"journal":{"name":"Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"73","resultStr":"{\"title\":\"Inferring social roles and statuses in social networks\",\"authors\":\"Yuchen Zhao, Guan Wang, Philip S. Yu, Shaobo Liu, Simon Zhang\",\"doi\":\"10.1145/2487575.2487597\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Users in online social networks play a variety of social roles and statuses. For example, users in Twitter can be represented as advertiser, content contributor, information receiver, etc; users in Linkedin can be in different professional roles, such as engineer, salesperson and recruiter. Previous research work mainly focuses on using categorical and textual information to predict the attributes of users. However, it cannot be applied to a large number of users in real social networks, since much of such information is missing, outdated and non-standard. In this paper, we investigate the social roles and statuses that people act in online social networks in the perspective of network structures, since the uniqueness of social networks is connecting people. We quantitatively analyze a number of key social principles and theories that correlate with social roles and statuses. We systematically study how the network characteristics reflect the social situations of users in an online society. We discover patterns of homophily, the tendency of users to connect with users with similar social roles and statuses. In addition, we observe that different factors in social theories influence the social role/status of an individual user to various extent, since these social principles represent different aspects of the network. We then introduce an optimization framework based on Factor Conditioning Symmetry, and we propose a probabilistic model to integrate the optimization framework on local structural information as well as network influence to infer the unknown social roles and statuses of online users. We will present experiment results to show the effectiveness of the inference.\",\"PeriodicalId\":20472,\"journal\":{\"name\":\"Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"73\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2487575.2487597\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2487575.2487597","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 73

摘要

在线社交网络中的用户扮演着各种各样的社会角色和身份。例如,Twitter中的用户可以被表示为广告商、内容贡献者、信息接收者等;Linkedin的用户可以是不同的职业角色,比如工程师、销售人员和招聘人员。以往的研究工作主要集中在利用分类信息和文本信息来预测用户的属性。然而,它无法应用于现实社交网络中的大量用户,因为这些信息中有很多是缺失的、过时的和非标准的。本文从网络结构的角度考察了人们在网络社交网络中所扮演的社会角色和地位,因为社交网络的独特性在于将人们联系起来。我们定量分析了一些与社会角色和地位相关的关键社会原则和理论。我们系统地研究了网络特征如何反映网络社会中用户的社会状况。我们发现了同质性模式,即用户倾向于与具有相似社会角色和地位的用户联系。此外,我们观察到社会理论中的不同因素在不同程度上影响个人用户的社会角色/地位,因为这些社会原则代表了网络的不同方面。在此基础上,我们引入了一个基于因子条件对称的优化框架,并提出了一个概率模型,将优化框架结合局部结构信息和网络影响来推断在线用户的未知社会角色和状态。我们将给出实验结果来证明推理的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Inferring social roles and statuses in social networks
Users in online social networks play a variety of social roles and statuses. For example, users in Twitter can be represented as advertiser, content contributor, information receiver, etc; users in Linkedin can be in different professional roles, such as engineer, salesperson and recruiter. Previous research work mainly focuses on using categorical and textual information to predict the attributes of users. However, it cannot be applied to a large number of users in real social networks, since much of such information is missing, outdated and non-standard. In this paper, we investigate the social roles and statuses that people act in online social networks in the perspective of network structures, since the uniqueness of social networks is connecting people. We quantitatively analyze a number of key social principles and theories that correlate with social roles and statuses. We systematically study how the network characteristics reflect the social situations of users in an online society. We discover patterns of homophily, the tendency of users to connect with users with similar social roles and statuses. In addition, we observe that different factors in social theories influence the social role/status of an individual user to various extent, since these social principles represent different aspects of the network. We then introduce an optimization framework based on Factor Conditioning Symmetry, and we propose a probabilistic model to integrate the optimization framework on local structural information as well as network influence to infer the unknown social roles and statuses of online users. We will present experiment results to show the effectiveness of the inference.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A general bootstrap performance diagnostic Flexible and robust co-regularized multi-domain graph clustering Beyond myopic inference in big data pipelines Constrained stochastic gradient descent for large-scale least squares problem Inferring distant-time location in low-sampling-rate trajectories
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1