基于频率、振幅和空间位置的听觉注意显著性模型

Laurence Morissette, S. Chartier
{"title":"基于频率、振幅和空间位置的听觉注意显著性模型","authors":"Laurence Morissette, S. Chartier","doi":"10.1109/IJCNN.2015.7280825","DOIUrl":null,"url":null,"abstract":"In this paper we present a model of saliency as the driving force behind endogenous attention in auditory processing using a competitive winner take all process. The model uses frequency, amplitude and spatial location bound together by temporal correlations in an oscillatory network to create unified perceptual objects that are consistent. The model also implements the interaction with exogenous attention.","PeriodicalId":6539,"journal":{"name":"2015 International Joint Conference on Neural Networks (IJCNN)","volume":"39 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Saliency model of auditory attention based on frequency, amplitude and spatial location\",\"authors\":\"Laurence Morissette, S. Chartier\",\"doi\":\"10.1109/IJCNN.2015.7280825\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present a model of saliency as the driving force behind endogenous attention in auditory processing using a competitive winner take all process. The model uses frequency, amplitude and spatial location bound together by temporal correlations in an oscillatory network to create unified perceptual objects that are consistent. The model also implements the interaction with exogenous attention.\",\"PeriodicalId\":6539,\"journal\":{\"name\":\"2015 International Joint Conference on Neural Networks (IJCNN)\",\"volume\":\"39 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Joint Conference on Neural Networks (IJCNN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.2015.7280825\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Joint Conference on Neural Networks (IJCNN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2015.7280825","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在本文中,我们提出了一个模型的显著性背后的驱动力内生注意在听觉加工中使用竞争性赢家通吃过程。该模型使用频率、幅度和空间位置,通过振荡网络中的时间相关性绑定在一起,以创建一致的统一感知对象。该模型还实现了与外生注意的交互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Saliency model of auditory attention based on frequency, amplitude and spatial location
In this paper we present a model of saliency as the driving force behind endogenous attention in auditory processing using a competitive winner take all process. The model uses frequency, amplitude and spatial location bound together by temporal correlations in an oscillatory network to create unified perceptual objects that are consistent. The model also implements the interaction with exogenous attention.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Efficient conformal regressors using bagged neural nets Repeated play of the SVM game as a means of adaptive classification Unit commitment considering multiple charging and discharging scenarios of plug-in electric vehicles High-dimensional function approximation using local linear embedding A label compression coding approach through maximizing dependence between features and labels for multi-label classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1