多孔泡沫床垫的多目标优化

IF 1.3 Q3 ENGINEERING, MECHANICAL PERIODICA POLYTECHNICA-MECHANICAL ENGINEERING Pub Date : 2022-12-22 DOI:10.3311/ppme.20259
A. Benkhettou, A. Sahli, S. Benbarek, Ismail Boudjemaa
{"title":"多孔泡沫床垫的多目标优化","authors":"A. Benkhettou, A. Sahli, S. Benbarek, Ismail Boudjemaa","doi":"10.3311/ppme.20259","DOIUrl":null,"url":null,"abstract":"Body pressure dispersion mattresses are useful tools for preventing pressure ulcers in patients with limited mobility who experience prolonged body weight-related compression loads at their body contact areas over time. The objective of this study is to propose and optimize a multicell finite element (FE) model of foam mattress to prevent patients from developing pressure ulcers (bed sores), by improving the contact pressure distribution on the upper mattress surface and immersion in the mattress. The NSGA-II multi-objective genetic algorithm was used to predict different configurations of cell materials to provide a more comfortable sleep. Our mattress model contains many cells (50 × 50 × 50), each of which can contain one of the nine different foam firmnesses. The NSGA-II algorithm attempts to combine the properties of soft and firm foams into a single mattress. however, the complexity and intersection of the fitness function objectives and the high number of possible chances forced the optimal solutions set to extend into the area under the result of foams that have a compressive strength between soft and firm. Based on the overall optimization results, the standard deviation ranged from 0.00325 to 0.00175 MPa and the maximum mattress immersion ranged from 50 mm to less than 20 mm. Mattresses with optimal configurations disperse body pressure smoothly to fit the patient's body shape.","PeriodicalId":43630,"journal":{"name":"PERIODICA POLYTECHNICA-MECHANICAL ENGINEERING","volume":"67 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2022-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-objective Optimization of Multi-cells Foam Mattress\",\"authors\":\"A. Benkhettou, A. Sahli, S. Benbarek, Ismail Boudjemaa\",\"doi\":\"10.3311/ppme.20259\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Body pressure dispersion mattresses are useful tools for preventing pressure ulcers in patients with limited mobility who experience prolonged body weight-related compression loads at their body contact areas over time. The objective of this study is to propose and optimize a multicell finite element (FE) model of foam mattress to prevent patients from developing pressure ulcers (bed sores), by improving the contact pressure distribution on the upper mattress surface and immersion in the mattress. The NSGA-II multi-objective genetic algorithm was used to predict different configurations of cell materials to provide a more comfortable sleep. Our mattress model contains many cells (50 × 50 × 50), each of which can contain one of the nine different foam firmnesses. The NSGA-II algorithm attempts to combine the properties of soft and firm foams into a single mattress. however, the complexity and intersection of the fitness function objectives and the high number of possible chances forced the optimal solutions set to extend into the area under the result of foams that have a compressive strength between soft and firm. Based on the overall optimization results, the standard deviation ranged from 0.00325 to 0.00175 MPa and the maximum mattress immersion ranged from 50 mm to less than 20 mm. Mattresses with optimal configurations disperse body pressure smoothly to fit the patient's body shape.\",\"PeriodicalId\":43630,\"journal\":{\"name\":\"PERIODICA POLYTECHNICA-MECHANICAL ENGINEERING\",\"volume\":\"67 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2022-12-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PERIODICA POLYTECHNICA-MECHANICAL ENGINEERING\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3311/ppme.20259\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PERIODICA POLYTECHNICA-MECHANICAL ENGINEERING","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3311/ppme.20259","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

身体压力分散床垫是防止压力溃疡的有效工具,对于行动不便的患者来说,随着时间的推移,他们的身体接触区域经历了长时间的体重相关的压缩负荷。本研究的目的是提出并优化泡沫床垫的多细胞有限元(FE)模型,通过改善床垫上表面的接触压力分布和浸入床垫来防止患者发生褥疮(褥疮)。采用NSGA-II多目标遗传算法预测细胞材料的不同配置,以提供更舒适的睡眠。我们的床垫模型包含许多单元格(50 × 50 × 50),每个单元格可以包含9种不同泡沫硬度中的一种。NSGA-II算法试图将柔软和坚固泡沫的特性结合到一个床垫中。然而,适应度函数目标的复杂性和交叉性以及大量可能的机会迫使最优解集扩展到具有软和硬之间抗压强度的泡沫结果下的区域。根据整体优化结果,标准偏差范围为0.00325 ~ 0.00175 MPa,床垫最大浸泡范围为50 mm ~小于20 mm。最佳配置的床垫,平滑分散身体压力,适合患者的体型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multi-objective Optimization of Multi-cells Foam Mattress
Body pressure dispersion mattresses are useful tools for preventing pressure ulcers in patients with limited mobility who experience prolonged body weight-related compression loads at their body contact areas over time. The objective of this study is to propose and optimize a multicell finite element (FE) model of foam mattress to prevent patients from developing pressure ulcers (bed sores), by improving the contact pressure distribution on the upper mattress surface and immersion in the mattress. The NSGA-II multi-objective genetic algorithm was used to predict different configurations of cell materials to provide a more comfortable sleep. Our mattress model contains many cells (50 × 50 × 50), each of which can contain one of the nine different foam firmnesses. The NSGA-II algorithm attempts to combine the properties of soft and firm foams into a single mattress. however, the complexity and intersection of the fitness function objectives and the high number of possible chances forced the optimal solutions set to extend into the area under the result of foams that have a compressive strength between soft and firm. Based on the overall optimization results, the standard deviation ranged from 0.00325 to 0.00175 MPa and the maximum mattress immersion ranged from 50 mm to less than 20 mm. Mattresses with optimal configurations disperse body pressure smoothly to fit the patient's body shape.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.80
自引率
7.70%
发文量
33
审稿时长
20 weeks
期刊介绍: Periodica Polytechnica is a publisher of the Budapest University of Technology and Economics. It publishes seven international journals (Architecture, Chemical Engineering, Civil Engineering, Electrical Engineering, Mechanical Engineering, Social and Management Sciences, Transportation Engineering). The journals have free electronic versions.
期刊最新文献
Investigating Particle Paths in Intracranial Aneurysms: A Parametric Study The Critical Length is a Good Measure to Distinguish between Stick Balancing in the ML and AP Directions Global Approach on the Shear and Cross Tension Strength of Resistance Spot Welded Thin Steel Sheets Photovoltaic Energy Generation in Hungary: Potentials of Green Hydrogen Production by PEM Technology Numerical Analysis to Investigate the Impact of Skirt Geometric Parameters on Secondary Piston Movement in a Single-cylinder Diesel Engine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1