{"title":"用于高动态范围成像和通信应用的宽禁带材料OPFET紫外探测器分析","authors":"J. Gaitonde, R. Lohani","doi":"10.4236/cn.2019.114007","DOIUrl":null,"url":null,"abstract":"The ultraviolet (UV) photoresponses of Wurtzite GaN, ZnO, and 6H-SiC-based Optical Field Effect Transistor (OPFET) detectors are estimated with an in-depth analysis of the same considering the generalized model and the front-illuminated model for high resolution imaging and UV communication applications. The gate materials considered for the proposed study are gold (Au) and Indium-Tin-Oxide (ITO) for GaN, Au for SiC, and Au and silver dioxide (AgO2) for ZnO. The results indicate significant improvement in the Linear Dynamic Range (LDR) over the previously investigated GaN OPFET (buried-gate, front-illuminated and generalized) models with Au gate. The generalized model has superior dynamic range than the front-illuminated model. In terms of responsivity, all the models including buried-gate OPFET exhibit high and comparable photoresponses. Buried-gate devices on the whole, exhibit faster response than the surface gate models except in the AgO2-ZnO generalized OPFET model wherein the switching time is the lowest. The generalized model enables faster switching than the front-illuminated model. The switching times in all the cases are of the order of nanoseconds to picoseconds. The SiC generalized OPFET model shows the highest 3-dB bandwidths of 11.88 GHz, 36.2 GHz, and 364 GHz, and modest unity-gain cut-off frequencies of 4.62 GHz, 8.71 GHz, and 5.71 GHz at the optical power densities of 0.575 μW/cm2, 0.575 mW/cm2, and 0.575 W/cm2 respectively. These are in overall, the highest detection-cum-amplifi-cation bandwidths among all the investigated devices. The same device exhibits the highest LDR of 73.3 dB. The device performance is superior to most of the other existing detectors along with comparable LDR, thus, emerging as a high performance photodetector for imaging and communication applications. All the detectors show considerably high detectivities owing to the high responsivity values. The results have been analyzed by the photovoltaic and the photoconductive effects, and the series resistance effects and will aid in conducting further research. The results are in line with the experiments and the commercially available software simulations. The devices will greatly contribute towards single photon counting, high resolution imaging, and UV communication applications.","PeriodicalId":91826,"journal":{"name":"... IEEE Conference on Communications and Network Security. IEEE Conference on Communications and Network Security","volume":"48 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Analysis of Wide-Bandgap Material OPFET UV Detectors for High Dynamic Range Imaging and Communication Applications\",\"authors\":\"J. Gaitonde, R. Lohani\",\"doi\":\"10.4236/cn.2019.114007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The ultraviolet (UV) photoresponses of Wurtzite GaN, ZnO, and 6H-SiC-based Optical Field Effect Transistor (OPFET) detectors are estimated with an in-depth analysis of the same considering the generalized model and the front-illuminated model for high resolution imaging and UV communication applications. The gate materials considered for the proposed study are gold (Au) and Indium-Tin-Oxide (ITO) for GaN, Au for SiC, and Au and silver dioxide (AgO2) for ZnO. The results indicate significant improvement in the Linear Dynamic Range (LDR) over the previously investigated GaN OPFET (buried-gate, front-illuminated and generalized) models with Au gate. The generalized model has superior dynamic range than the front-illuminated model. In terms of responsivity, all the models including buried-gate OPFET exhibit high and comparable photoresponses. Buried-gate devices on the whole, exhibit faster response than the surface gate models except in the AgO2-ZnO generalized OPFET model wherein the switching time is the lowest. The generalized model enables faster switching than the front-illuminated model. The switching times in all the cases are of the order of nanoseconds to picoseconds. The SiC generalized OPFET model shows the highest 3-dB bandwidths of 11.88 GHz, 36.2 GHz, and 364 GHz, and modest unity-gain cut-off frequencies of 4.62 GHz, 8.71 GHz, and 5.71 GHz at the optical power densities of 0.575 μW/cm2, 0.575 mW/cm2, and 0.575 W/cm2 respectively. These are in overall, the highest detection-cum-amplifi-cation bandwidths among all the investigated devices. The same device exhibits the highest LDR of 73.3 dB. The device performance is superior to most of the other existing detectors along with comparable LDR, thus, emerging as a high performance photodetector for imaging and communication applications. All the detectors show considerably high detectivities owing to the high responsivity values. The results have been analyzed by the photovoltaic and the photoconductive effects, and the series resistance effects and will aid in conducting further research. The results are in line with the experiments and the commercially available software simulations. The devices will greatly contribute towards single photon counting, high resolution imaging, and UV communication applications.\",\"PeriodicalId\":91826,\"journal\":{\"name\":\"... IEEE Conference on Communications and Network Security. IEEE Conference on Communications and Network Security\",\"volume\":\"48 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"... IEEE Conference on Communications and Network Security. IEEE Conference on Communications and Network Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4236/cn.2019.114007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"... IEEE Conference on Communications and Network Security. IEEE Conference on Communications and Network Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4236/cn.2019.114007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Analysis of Wide-Bandgap Material OPFET UV Detectors for High Dynamic Range Imaging and Communication Applications
The ultraviolet (UV) photoresponses of Wurtzite GaN, ZnO, and 6H-SiC-based Optical Field Effect Transistor (OPFET) detectors are estimated with an in-depth analysis of the same considering the generalized model and the front-illuminated model for high resolution imaging and UV communication applications. The gate materials considered for the proposed study are gold (Au) and Indium-Tin-Oxide (ITO) for GaN, Au for SiC, and Au and silver dioxide (AgO2) for ZnO. The results indicate significant improvement in the Linear Dynamic Range (LDR) over the previously investigated GaN OPFET (buried-gate, front-illuminated and generalized) models with Au gate. The generalized model has superior dynamic range than the front-illuminated model. In terms of responsivity, all the models including buried-gate OPFET exhibit high and comparable photoresponses. Buried-gate devices on the whole, exhibit faster response than the surface gate models except in the AgO2-ZnO generalized OPFET model wherein the switching time is the lowest. The generalized model enables faster switching than the front-illuminated model. The switching times in all the cases are of the order of nanoseconds to picoseconds. The SiC generalized OPFET model shows the highest 3-dB bandwidths of 11.88 GHz, 36.2 GHz, and 364 GHz, and modest unity-gain cut-off frequencies of 4.62 GHz, 8.71 GHz, and 5.71 GHz at the optical power densities of 0.575 μW/cm2, 0.575 mW/cm2, and 0.575 W/cm2 respectively. These are in overall, the highest detection-cum-amplifi-cation bandwidths among all the investigated devices. The same device exhibits the highest LDR of 73.3 dB. The device performance is superior to most of the other existing detectors along with comparable LDR, thus, emerging as a high performance photodetector for imaging and communication applications. All the detectors show considerably high detectivities owing to the high responsivity values. The results have been analyzed by the photovoltaic and the photoconductive effects, and the series resistance effects and will aid in conducting further research. The results are in line with the experiments and the commercially available software simulations. The devices will greatly contribute towards single photon counting, high resolution imaging, and UV communication applications.