Barry Michaels, Vidhya Gangar, Herb Schattenberg, Matthew Blevins, Troy Ayers
{"title":"用于去除农产品中物理、化学和微生物残留物的清洁方法的有效性","authors":"Barry Michaels, Vidhya Gangar, Herb Schattenberg, Matthew Blevins, Troy Ayers","doi":"10.1046/j.1471-5740.2003.00063.x","DOIUrl":null,"url":null,"abstract":"<p>An increasing number of disease outbreaks have been associated with produce, while pesticide levels continue to be a safety concern. With increased health awareness, fresh produce consumption has increased. As there is a need for microbial and pesticide removal intervention measures of proven efficacy to maintain confidence in food service produce preparation, a series of experiments were undertaken. Produce cleaning methods were tested by measuring removal of gross dirt, wax and environmental contaminants present on produce surface. Tests were performed on apples, cucumbers and lemons using water wash, produce brush, produce cleaner, produce cleaner with paper towel wipe, and water wash and paper towel wipe. Water rinse and paper towel dry was found superior to all other methods tested. Apples contaminated with a cocktail of pesticides were tested in waxed and unwaxed state. Following cleaning by various methods, including produce wash and produce brush, pesticides on skins were extracted and analyzed to determine concentrations of organophosphorous and organochlorine pesticides. In these experiments, it was shown that any treatment that included wiping with paper towels showed increased effectiveness over similar treatments or controls. Microbial efficacy experiments were performed involving 21 different types of laboratory inoculated produce. Two types of inoculum were employed, Tryptone Soya broth (TSB) and ground beef. After inoculation, produce was cleaned by dry wiping with paper towel, using water wash air dry, water wash paper towel dry or dipped in 200 p.p.m. chlorine dip for either 5 s or 1 min and compared to baseline values. One-minute dip in 200 p.p.m. chlorine solution was more effective than rinsing and drying with a paper towel when TSB inoculum was used (<i>P</i> < 0.05). The effectiveness of the 200 p.p.m. chlorine dip diminished if ground beef was used as a test inoculum, with water rinse and paper towel providing significantly (<i>P</i> < 0.05) improved results. The efficacy shown by paper towels usage in this diverse set of experiments is based on frictional removal of offending soils.</p>","PeriodicalId":100547,"journal":{"name":"Food Service Technology","volume":"3 1","pages":"9-15"},"PeriodicalIF":0.0000,"publicationDate":"2003-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1046/j.1471-5740.2003.00063.x","citationCount":"24","resultStr":"{\"title\":\"Effectiveness of cleaning methodologies used for removal of physical, chemical and microbiological residues from produce\",\"authors\":\"Barry Michaels, Vidhya Gangar, Herb Schattenberg, Matthew Blevins, Troy Ayers\",\"doi\":\"10.1046/j.1471-5740.2003.00063.x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>An increasing number of disease outbreaks have been associated with produce, while pesticide levels continue to be a safety concern. With increased health awareness, fresh produce consumption has increased. As there is a need for microbial and pesticide removal intervention measures of proven efficacy to maintain confidence in food service produce preparation, a series of experiments were undertaken. Produce cleaning methods were tested by measuring removal of gross dirt, wax and environmental contaminants present on produce surface. Tests were performed on apples, cucumbers and lemons using water wash, produce brush, produce cleaner, produce cleaner with paper towel wipe, and water wash and paper towel wipe. Water rinse and paper towel dry was found superior to all other methods tested. Apples contaminated with a cocktail of pesticides were tested in waxed and unwaxed state. Following cleaning by various methods, including produce wash and produce brush, pesticides on skins were extracted and analyzed to determine concentrations of organophosphorous and organochlorine pesticides. In these experiments, it was shown that any treatment that included wiping with paper towels showed increased effectiveness over similar treatments or controls. Microbial efficacy experiments were performed involving 21 different types of laboratory inoculated produce. Two types of inoculum were employed, Tryptone Soya broth (TSB) and ground beef. After inoculation, produce was cleaned by dry wiping with paper towel, using water wash air dry, water wash paper towel dry or dipped in 200 p.p.m. chlorine dip for either 5 s or 1 min and compared to baseline values. One-minute dip in 200 p.p.m. chlorine solution was more effective than rinsing and drying with a paper towel when TSB inoculum was used (<i>P</i> < 0.05). The effectiveness of the 200 p.p.m. chlorine dip diminished if ground beef was used as a test inoculum, with water rinse and paper towel providing significantly (<i>P</i> < 0.05) improved results. The efficacy shown by paper towels usage in this diverse set of experiments is based on frictional removal of offending soils.</p>\",\"PeriodicalId\":100547,\"journal\":{\"name\":\"Food Service Technology\",\"volume\":\"3 1\",\"pages\":\"9-15\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1046/j.1471-5740.2003.00063.x\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Service Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1046/j.1471-5740.2003.00063.x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Service Technology","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1046/j.1471-5740.2003.00063.x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Effectiveness of cleaning methodologies used for removal of physical, chemical and microbiological residues from produce
An increasing number of disease outbreaks have been associated with produce, while pesticide levels continue to be a safety concern. With increased health awareness, fresh produce consumption has increased. As there is a need for microbial and pesticide removal intervention measures of proven efficacy to maintain confidence in food service produce preparation, a series of experiments were undertaken. Produce cleaning methods were tested by measuring removal of gross dirt, wax and environmental contaminants present on produce surface. Tests were performed on apples, cucumbers and lemons using water wash, produce brush, produce cleaner, produce cleaner with paper towel wipe, and water wash and paper towel wipe. Water rinse and paper towel dry was found superior to all other methods tested. Apples contaminated with a cocktail of pesticides were tested in waxed and unwaxed state. Following cleaning by various methods, including produce wash and produce brush, pesticides on skins were extracted and analyzed to determine concentrations of organophosphorous and organochlorine pesticides. In these experiments, it was shown that any treatment that included wiping with paper towels showed increased effectiveness over similar treatments or controls. Microbial efficacy experiments were performed involving 21 different types of laboratory inoculated produce. Two types of inoculum were employed, Tryptone Soya broth (TSB) and ground beef. After inoculation, produce was cleaned by dry wiping with paper towel, using water wash air dry, water wash paper towel dry or dipped in 200 p.p.m. chlorine dip for either 5 s or 1 min and compared to baseline values. One-minute dip in 200 p.p.m. chlorine solution was more effective than rinsing and drying with a paper towel when TSB inoculum was used (P < 0.05). The effectiveness of the 200 p.p.m. chlorine dip diminished if ground beef was used as a test inoculum, with water rinse and paper towel providing significantly (P < 0.05) improved results. The efficacy shown by paper towels usage in this diverse set of experiments is based on frictional removal of offending soils.