海藻酸-明胶水凝胶、低温凝胶和气凝胶珠作为组织支架的比较评价

Ece Bayir
{"title":"海藻酸-明胶水凝胶、低温凝胶和气凝胶珠作为组织支架的比较评价","authors":"Ece Bayir","doi":"10.16984/saufenbilder.1098637","DOIUrl":null,"url":null,"abstract":"Hydrogels are frequently used in tissue engineering and regenerative medicine, drug delivery, and environmental remediation. Alginate and gelatin, which are frequently used natural polymers to form hydrogels, were chosen in this study to form a core-shell structured hydrogel. Cryogels and aerogels were obtained by drying hydrogels with different methods, freeze-drying, and the continuous flow of supercritical CO2, respectively. The potential use of hydrogels, aerogels, and cryogels as a tissue scaffold was evaluated comparatively. Characterizations of materials were determined morphologically by scanning electron microscope and computed-micro tomography, chemically by energy dispersive spectroscopy, and mechanically by the dynamic mechanical analyzer. In addition, the cytotoxic effect of all structures was analyzed by the WST-1 method and the localization of the cells in these structures was determined by microscopic methods. All scaffolds show non-cytotoxic effects, and cryogels have the highest porosity and pore diameter values. The elastic modulus values were","PeriodicalId":21468,"journal":{"name":"Sakarya University Journal of Science","volume":"13 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Comparative Evaluation of Alginate-Gelatin Hydrogel, Cryogel, and Aerogel Beads as a Tissue Scaffold\",\"authors\":\"Ece Bayir\",\"doi\":\"10.16984/saufenbilder.1098637\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hydrogels are frequently used in tissue engineering and regenerative medicine, drug delivery, and environmental remediation. Alginate and gelatin, which are frequently used natural polymers to form hydrogels, were chosen in this study to form a core-shell structured hydrogel. Cryogels and aerogels were obtained by drying hydrogels with different methods, freeze-drying, and the continuous flow of supercritical CO2, respectively. The potential use of hydrogels, aerogels, and cryogels as a tissue scaffold was evaluated comparatively. Characterizations of materials were determined morphologically by scanning electron microscope and computed-micro tomography, chemically by energy dispersive spectroscopy, and mechanically by the dynamic mechanical analyzer. In addition, the cytotoxic effect of all structures was analyzed by the WST-1 method and the localization of the cells in these structures was determined by microscopic methods. All scaffolds show non-cytotoxic effects, and cryogels have the highest porosity and pore diameter values. The elastic modulus values were\",\"PeriodicalId\":21468,\"journal\":{\"name\":\"Sakarya University Journal of Science\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sakarya University Journal of Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.16984/saufenbilder.1098637\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sakarya University Journal of Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.16984/saufenbilder.1098637","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

水凝胶经常用于组织工程和再生医学、药物输送和环境修复。海藻酸盐和明胶是常用的天然聚合物形成水凝胶,在本研究中选择形成核壳结构的水凝胶。对水凝胶分别采用不同的干燥方法、冷冻干燥方法和超临界CO2连续流动的方法得到冷冻凝胶和气凝胶。比较评价了水凝胶、气凝胶和低温凝胶作为组织支架的潜在用途。材料的形貌表征采用扫描电子显微镜和计算机显微断层扫描,化学表征采用能量色散光谱,机械表征采用动态力学分析仪。此外,通过WST-1方法分析了所有结构的细胞毒作用,并通过显微镜方法确定了细胞在这些结构中的定位。所有支架均显示无细胞毒性作用,低温支架具有最高的孔隙率和孔径值。弹性模量为
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comparative Evaluation of Alginate-Gelatin Hydrogel, Cryogel, and Aerogel Beads as a Tissue Scaffold
Hydrogels are frequently used in tissue engineering and regenerative medicine, drug delivery, and environmental remediation. Alginate and gelatin, which are frequently used natural polymers to form hydrogels, were chosen in this study to form a core-shell structured hydrogel. Cryogels and aerogels were obtained by drying hydrogels with different methods, freeze-drying, and the continuous flow of supercritical CO2, respectively. The potential use of hydrogels, aerogels, and cryogels as a tissue scaffold was evaluated comparatively. Characterizations of materials were determined morphologically by scanning electron microscope and computed-micro tomography, chemically by energy dispersive spectroscopy, and mechanically by the dynamic mechanical analyzer. In addition, the cytotoxic effect of all structures was analyzed by the WST-1 method and the localization of the cells in these structures was determined by microscopic methods. All scaffolds show non-cytotoxic effects, and cryogels have the highest porosity and pore diameter values. The elastic modulus values were
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Detailed Comparison of Two New Heuristic Algorithms Based on Gazelles Behavior Determination of Pesticide Residues in Water Using Extraction Method Developing an optimization model for minimizing solid waste collection costs Fractal Approach to Dielectric Properties of Single Walled Carbon Nanotubes Reinforced Polymer Composites Evaluation of the Antigenotoxic Effect of Quercetin Against Antiepileptic Drug Genotoxicity by Comet Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1