基于未来电池和燃料电池技术的移动应用储能系统混合算法

Q3 Engineering AUS Pub Date : 2023-03-29 DOI:10.1109/ESARS-ITEC57127.2023.10114853
Bruno Lemoine, P. Caliandro, T. Wannemacher, Nils Baumann, A. Vezzini
{"title":"基于未来电池和燃料电池技术的移动应用储能系统混合算法","authors":"Bruno Lemoine, P. Caliandro, T. Wannemacher, Nils Baumann, A. Vezzini","doi":"10.1109/ESARS-ITEC57127.2023.10114853","DOIUrl":null,"url":null,"abstract":"Shifting the mobility paradigm from fossil fuel to electric propulsion system poses several challenges to a large extent attributed to the low energy density of storage systems. However, technology improvements and an accurate combination of new propulsion systems can facilitate the electrification of the mobility sector. For the first time, a hybridization algorithm is developed to evaluate the optimal configuration of future Energy Storage System (ESS) to facilitate the design of systems such as aircrafts or ships. The algorithm is based on operational behaviors and high-level performances to determine the optimal solution through a standard random search of the input variables. To feed the algorithm, forecasts including estimated performances are carried out on new energy storage technologies such as Fuel Cells (FCs), batteries, and hydrogen storage. The hybridization algorithm is then applied to the design of a 50 passengers' regional electric aircraft in 2040. The results suggest that the best ESS includes a Solid-State Battery (SSB) of 457 kWh, a 1788 $\\mathbf{kW}$ Solid-Oxide Fuel Cell (SOFC) plant and consumes 190.9 kg of hydrogen. This configuration appears to be the optimal trade-off to minimize weight, volume, and costs.","PeriodicalId":38493,"journal":{"name":"AUS","volume":"4 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Energy Storage System Hybridization Algorithm for Mobility Applications Based on Future Battery and Fuel Cell Technologies\",\"authors\":\"Bruno Lemoine, P. Caliandro, T. Wannemacher, Nils Baumann, A. Vezzini\",\"doi\":\"10.1109/ESARS-ITEC57127.2023.10114853\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Shifting the mobility paradigm from fossil fuel to electric propulsion system poses several challenges to a large extent attributed to the low energy density of storage systems. However, technology improvements and an accurate combination of new propulsion systems can facilitate the electrification of the mobility sector. For the first time, a hybridization algorithm is developed to evaluate the optimal configuration of future Energy Storage System (ESS) to facilitate the design of systems such as aircrafts or ships. The algorithm is based on operational behaviors and high-level performances to determine the optimal solution through a standard random search of the input variables. To feed the algorithm, forecasts including estimated performances are carried out on new energy storage technologies such as Fuel Cells (FCs), batteries, and hydrogen storage. The hybridization algorithm is then applied to the design of a 50 passengers' regional electric aircraft in 2040. The results suggest that the best ESS includes a Solid-State Battery (SSB) of 457 kWh, a 1788 $\\\\mathbf{kW}$ Solid-Oxide Fuel Cell (SOFC) plant and consumes 190.9 kg of hydrogen. This configuration appears to be the optimal trade-off to minimize weight, volume, and costs.\",\"PeriodicalId\":38493,\"journal\":{\"name\":\"AUS\",\"volume\":\"4 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AUS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ESARS-ITEC57127.2023.10114853\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AUS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESARS-ITEC57127.2023.10114853","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

从化石燃料到电力推进系统的移动模式的转变带来了一些挑战,很大程度上归因于存储系统的低能量密度。然而,技术进步和新推进系统的精确组合可以促进移动领域的电气化。首次提出了一种混合算法来评估未来储能系统(ESS)的最佳配置,以方便飞机或船舶等系统的设计。该算法基于操作行为和高级性能,通过对输入变量的标准随机搜索来确定最优解。为了给算法提供信息,对燃料电池(fc)、电池和氢存储等新能源存储技术进行了包括估计性能在内的预测。然后将混合算法应用于2040年的50座支线电动飞机的设计。结果表明,最佳ESS包括一个457千瓦时的固态电池(SSB),一个1788美元的固体氧化物燃料电池(SOFC)装置,消耗190.9千克氢。这种配置似乎是最小化重量、体积和成本的最佳选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Energy Storage System Hybridization Algorithm for Mobility Applications Based on Future Battery and Fuel Cell Technologies
Shifting the mobility paradigm from fossil fuel to electric propulsion system poses several challenges to a large extent attributed to the low energy density of storage systems. However, technology improvements and an accurate combination of new propulsion systems can facilitate the electrification of the mobility sector. For the first time, a hybridization algorithm is developed to evaluate the optimal configuration of future Energy Storage System (ESS) to facilitate the design of systems such as aircrafts or ships. The algorithm is based on operational behaviors and high-level performances to determine the optimal solution through a standard random search of the input variables. To feed the algorithm, forecasts including estimated performances are carried out on new energy storage technologies such as Fuel Cells (FCs), batteries, and hydrogen storage. The hybridization algorithm is then applied to the design of a 50 passengers' regional electric aircraft in 2040. The results suggest that the best ESS includes a Solid-State Battery (SSB) of 457 kWh, a 1788 $\mathbf{kW}$ Solid-Oxide Fuel Cell (SOFC) plant and consumes 190.9 kg of hydrogen. This configuration appears to be the optimal trade-off to minimize weight, volume, and costs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
AUS
AUS Engineering-Architecture
CiteScore
0.40
自引率
0.00%
发文量
14
期刊介绍: Revista AUS es una publicación académica de corriente principal perteneciente a la comunidad de investigadores de la arquitectura y el urbanismo sostenibles, en el ámbito de las culturas locales y globales. La revista es semestral, cuenta con comité editorial y sus artículos son revisados por pares en el sistema de doble ciego. Periodicidad semestral.
期刊最新文献
Envejecer en la playa. La emergente migración de personas mayores hacia el Litoral Central de Chile (1987 – 2017) Análisis comparativo en la rehabilitación de envolvente térmica de cerramientos educacionales con criterio ambiental Decisiones de diseño y construcción que influyen en la durabilidad del bambú en edificaciones Hábitat anfibio de la selva amazónica. El caso de la zona rural con tipologías de asentamiento y la vivienda en el barrio Victoria Regia Aeropuerto y arquitectura moderna, una tensión entre global y local: el caso de Punta Arenas
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1